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Moving beyond de novo
clustering in fungal community
ecology

Introduction

High throughput sequencing (HTS) has rapidly become the
de facto tool for characterizing microbial community structure in a
wide variety of habitats (Caporaso et al., 2011; Peay et al., 2016;
Truong et al., 2017). Accompanying the expanding use of HTS to
quantify microbial diversity is the need to delineate species, the
ecological unit traditionally used to compare the richness and
composition of communities across treatments, locations or
habitats (Magurran, 2005). Due to the challenges in identifying
microbial species using morphology or biology alone, designations
are typically made by ‘binning’ DNA sequences that meet a
similarity threshold into operational taxonomic units (OTUs;
Blaxter et al., 2005). Currently, the most widely employed
approach for defining fungal OTUs is done according to similar-
ities among sequences within the dataset (Supporting Information
Fig. S1). Commonly referred to as de novo clustering (Bik et al.,
2012), this approach requires no input database as a reference,
which is advantageous when characterizing communities with little
a priori knowledge. Despite this benefit, the ecological insights
gleaned from de novo clustering can be limited by the challenge of
directly comparing OTU identity across different studies (€Opik
et al., 2014), and the coarse phylogenetic resolution of many
taxonomic assignments (Halwachs et al., 2017).

One alternative to de novo clustering is the closed reference
approach, where OTUs are binned according to sequence
similarity of those in a reference database. With this approach,
both OTU clustering and taxonomic designations occur simul-
taneously. Although the use of closed reference clustering in fungal
ecology has been scarce (Fig. S1), it has become increasingly
common in the molecular characterization of arbuscular mycor-
rhizal (AM) fungal communities as well as in many bacterial
‘microbiome’ studies (€Opik et al., 2014; Kelly et al., 2016). The
relatively low taxonomic and phylogenetic diversity of AM fungal
communities (Stajich et al., 2009; Redecker et al., 2013; Davison
et al., 2015), combined with a curated database (€Opik et al., 2010)
and increasingly wide usage of the 18S rRNA gene for molecular
characterization ( €Opik et al., 2014), may explain why AM fungal
community ecologists (relative to other fungal ecologists) have
readily embraced closed reference clustering. Notably, the closed
reference clustering approach has contributed significant new
ecological understanding to patterns of AM community assembly

by tracking OTUs (referred to as VT, €Opik et al., 2010) across
studies with both contrasting habitat types and a wide variety of
spatial scales (Davison et al., 2015; Garc�ıa de Le�on et al., 2016).
A second alternative to de novo clustering is an open reference
approach, which first clusters sequences to a reference database,
followed by de novo clustering of the remaining unmatched
sequences. This hybrid approach can combine the advantages of
the two aforementioned clustering approaches (Rideout et al.,
2014; He et al., 2015), but its interpretation can be problematic if
the OTU definitions between closed reference and de novo
approaches differ. Although open reference clustering is the least
commonly used in fungal community ecology analyses to date
(Fig. S1), it has been employed in studies of both arbuscular
mycorrhizal and ectomycorrhizal fungal communities (Dumbrell
et al., 2010; Jarvis et al., 2015).

The increasingly widespread adoption of reference-based clus-
tering inmanymicrobial analyses raises the question: should fungal
ecologists re-consider their default use of de novo clustering? In
particular, it seems that reference-based clusteringmay represent an
increasingly useful approach to fungal community analyses as
databases such as UNITE (K~oljalg et al., 2013) grow in size and a
greater diversity of fungal habitats are molecularly characterized.
Recent studies have suggested that reference-based clustering can
increase OTU stability and taxonomic accuracy relative to de novo
clustering (He et al., 2015; Halwachs et al., 2017), although how
this clustering approach influences fungal community analyses
across diverse habitats is currently unclear. To assess this gap in
knowledge, we compared the relative performance of de novo,
closed reference, and open reference clustering approaches on a
mock community, as well as samples from four ecologically distinct
habitats. These habitats varied in the degree to which fungal
composition was captured by the UNITE database, providing an
opportunity to investigate the importance of a priori habitat
characterization on clustering approach performance.

Using dead wood, live wood, live leaf and forest soil samples, we
quantified fungal species assignments, OTU richness and com-
munity composition from ITS1 amplicon libraries sequenced on
the IlluminaMiSeq platform.We compared two de novo clustering
algorithms (CD-HIT and USEARCH; Li & Godzik, 2006; Edgar,
2010), two closed reference clustering algorithms (BLAST and
NINJA-OPS; Altschul et al., 1990; Al-Ghalith et al., 2016), as well as
two open reference clustering scenarios (NINJA/USEARCH; BLAST/
CD-HIT) applying a 97% sequence similarity cutoff for OTU
clustering aswell as taxonomy assignments (Table S1). For the open
reference clustering, sequences were first clustered by a closed
reference algorithm (i.e. NINJA or BLAST); the remaining sequences
that failed to cluster were then clustered by a de novo clustering
approach (i.e. USEARCH or CD-HIT), and the OTU tables were
combined (sensu Rideout et al., 2014). The UNITE database (v.7.0)
was used for reference-based clustering as well as for designating
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taxonomic assignments of de novo OTUs (K~oljalg et al., 2013) via
the BLASTN algorithm (Altschul et al., 1990). See Methods S1 and
S2 for further details on sample harvest, library preparation,
sequence processing, and data accessibility.

Results and Discussion

Taxonomic designations are an important component of fungal
community analyses, as this information ultimately informs how
communities vary across habitat types. To understand the influence
of clustering approach on OTU taxonomic classifications, we
analysed a mock community comprised of 25 fungal species, and
encompassing a range of taxonomic and phylogenetic diversity
(Nguyen et al., 2015). Across clustering algorithms, mock OTU
richness ranged between 23 and 29 OTUs (Fig. 1). USEARCH was
the only algorithm to cluster the expected number of OTUs,
although the closed reference clustering approach was the most
precise in estimating mock richness (i.e. it had a narrower range of
richness (23–26 OTUs) relative to de novo and open reference
approaches, both ranging from 23 to 29 OTUs). Considering the
taxonomy of the mock community, OTUs with expected species-
level assignments ranged between 20 and 22 across clustering
scenarios (Fig. 1), with the highest mock species recovery in
USEARCH and open reference scenario BLAST/CD-HIT. At a slightly

coarser taxonomic resolution, the number of mock OTUs with
expected genus-level classifications increased slightly (21 and 23
OTUs across clustering scenarios), andwas highest inNINJA and the
open reference scenario NINJA/USEARCH (Fig. S2). Whilst the de
novo and reference-based approaches performed relatively similarly
across these metrics, the extent of OTU inflation in the mock
community appeared to be larger in select de novo and open
reference clustering scenarios. Collectively, these results suggest
that there is general parity inOTUrichness and taxonomic recovery
between de novo and reference-based clustering approaches and that
the choice of algorithm had a larger influence onmock community
estimates than the clustering approach.

Across the live wood, dead wood, live leaf and soil samples, we
compared OTU richness and OTU relative richness (i.e. the log-
ratio of average OTU richness in one habitat relative to another)
among the de novo, closed reference and open reference clustering
approaches, following the removal of rare OTUs (i.e. OTUs with
fewer than 10 sequences within a sample; see Lindahl et al., 2013
and Oliver et al., 2015). Total fungal OTU richness within each of
the four habitats was significantly lower using the closed reference
approaches (Table 1), where an average of 36% fewer OTUs were
generated relative tode novo andopen reference clusteringmethods.
This substantial richness discrepancy is likely to be the result of two
competing influences: sequences failing to cluster in the closed

Fig. 1 Mock community operational
taxonomic unit (OTU) richness and taxonomic
classifications calculated by six different de
novo, closed reference, and open reference
clustering approaches. Richness was
compared to expected values based on the
number of fungal species used to generate the
mock community sample. Species and genus-
level designations were quantified according
to the number of mock species recovered at
respective taxonomic levels. Multiple OTUs
with same species name were counted only
once; mismatched taxonomic IDs were not
included in the visualization.
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reference approaches due to an incomplete reference database as
well as amplification and sequencing errors contributing to the
clustering of additional OTUs in de novo datasets (Bik et al., 2012;
but see Aas et al., 2017). Datasets incorporating de novo clustering
may be more susceptible to these errors relative to closed reference
datasets, as closed reference sequences must match reference
sequences to be clustered into OTUs. Despite differences in total
richness, relative richness estimates amongst habitats were consis-
tent across the clustering approaches, as indicated by log richness
ratios with overlapping 95% confidence intervals between soil and
the three other fungal habitats, independent of specific clustering
algorithm (Fig. S3). This latter result indicates that fungal richness
discrepancies amongst clustering approaches were comparable
across habitat types, despite large differences in fungal represen-
tation in the UNITE database (e.g. well-characterized live leaves vs
poorly-characterized live wood). Thus, it appears that clustering
approach had minimal impact on the conclusions of richness that
could be drawn when compared in a relative manner (i.e. between
treatments). As such, we suggest that relative richness metrics in
HTS datasets may actually be more ecologically meaningful than
comparisons based on absolute richness (Hughes et al., 2001;
Haegeman et al., 2013).

In addition to fungal OTU richness, we investigated whether
clustering approach influenced b-diversity estimates of fungal
community composition across the four habitats. We calculated
Bray–Curtis distances among all samples (Bray & Curtis, 1957),
following Hellinger transformations of the OTU abundances
(Legendre & Gallagher, 2001) for each clustering algorithm. We
found that each clustering scenario consistently differentiated
fungal communities by habitat (i.e. live wood, dead wood, live
leaves or soil), as indicated by four distinct groupings of fungal
communities in Principal Coordinates Analysis (Fig. 2) as well as a
significant habitat term in each PerMANOVA model (permuta-
tional multivariate ANOVA; F3,39 = 8.9–11.1; R2 = 0.41–0.42;
P < 0.001). Additionally, Bray–Curtis distance matrices were
highly correlated among the de novo, closed reference and open
reference approaches (Mantel test; R = 0.97–0.99), indicating that
fungal community comparisons between samples were consistently

similar (more precisely, dissimilar) and to the same extent across
clustering approaches. Given the large divergence in community
composition across these habitats, it is possible that the significant
effects observed would not be present when similar analyses are
made within habitats. To address this possibility, we repeated the
same b-diversity estimates across the three clustering approaches
within both the soil and dead wood habitats. Similar to the
between-habitat results, we found relatively consistent sample
distributions in ordination space for both habitat types (Figs S4,
S5). Additionally, significant Mantel correlations between each
pair of clustering algorithms for soil (Mantel R = 0.75–0.92;
P < 0.001) and dead wood (Mantel R = 0.92–0.98; P < 0.001)
indicate that the finer-scale compositional differences between
samples within a habitat were preserved across clustering
approaches. Taken together, the large consistencies in b-diversity
across clustering approaches suggests that the current size of the
UNITE database is not a limitation for the analysis of fungal
community composition across a diverse range of terrestrial habitat
types.

While patterns of fungal community a- and b-diversity among
varying habitats were remarkably similar regardless of clustering
approach, one notable limitation for the closed reference clustering
approach that we encountered was the low number of clustered
sequences in poorly characterized habitats. Among the habitats
sampled, the mean number of sequences clustered using closed
reference approaches was 62% lower in live wood compared to 5%
lower in live leaves, relative to de novo clustering (Table 1). When
sampling effort was standardized across habitat types (see McMur-
die &Holmes, 2014 for potential limitations), the low proportion
of clustered sequences in live wood along with the low initial ITS
sequence recovery for this habitat type substantially limited the
number of sequences that could be included in the analysis.
Specifically, we rarefied each sample to 1000 sequences to retain as
many live wood samples as possible, removing any sample that did
not meet this threshold across all clustering algorithms (Table S2).
If the de novo clustering approach alone was considered, we could
have increased our rarefaction threshold four-fold while maintain-
ing the same sample count in live wood. Yet, of the sequences that

Table 1 Mean number of sequences clustered into operational taxonomic units (OTUs) (a) and average OTU richness (b) per environmental substrate and
clustering algorithm

Approach Algorithm Live wood Dead wood Live leaf Soil

(a) Sequences clustered
(unrarefied samples)

De novo CD-HIT 5707� 4684 34 894� 19 680 72 393� 17 948 44 699� 22 539
USEARCH 5737� 4691 34 956� 19 724 72 509� 17 934 45 132� 22 686

Closed reference BLAST 1764� 2051 23 297� 17 247 64 580� 12 955 30 836� 15 412
NINJA 2651� 3725 23 906� 14 233 67 656� 15 582 32 187� 17 497

Open reference BLAST/CD-HIT 5711� 4683 34 722� 19 869 72 403� 17 936 44 744� 22 544
NINJA/USEARCH 5527� 4735 34 731� 20 170 70 930� 16 457 42 297� 22 116

(b) OTU richness
(rarefied samples)

De novo CD-HIT 53� 24.0a 37� 9.1a 61� 9.3a 94� 13.6a

USEARCH 51� 23.7a 31� 9.0a 44� 8.3bc 80� 13.6a

Closed reference BLAST 24� 10.6b 20� 5.6b 35� 5.1c 61� 7.8b

NINJA 25� 12.4b 18� 4.7b 38� 6.1 cd 63� 8.1b

Open reference BLAST/CD-HIT 54� 23.7a 36� 10.8a 52� 7.7ab 88� 13.1a

NINJA/USEARCH 53� 23.7a 32� 9.8a 50� 8.4bc 82� 13.3a

Mean� SD. For each substrate, OTU richness differences between algorithms were determined by one-way ANOVAs, followed by Tukey’s HSD. Lowercase
letters indicate statistical differences at a < 0.05.
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failed to cluster under the BLAST andNINJA algorithms, themajority
(0.69 and 0.82, respectively) were not identified at the genus level
following de novo clustering and subsequent taxonomic assignment
(Fig. S6), validating the expectation that closed reference results
recovered nearly as many genera as de novo and open reference
clustering approaches. Together, these results suggest that for
particularly poorly characterized systems, such as live wood, or
potentially aquatic andmarine systems (Peay et al., 2016), either de
novo or open reference clustering may still be preferable to the
closed reference approach. Nonetheless, excluding sequences with
no taxonomic assignment during closed reference clustering did
not impact richness comparisons in even the least well-
characterized habitat, although this may not necessarily be the case
across other habitat comparisons.

Conclusions

Despite the prevalence of de novo clustering in fungal community
analysis, our results suggest that reference-based clustering
approaches have a similar potential to accurately characterize the
relative richness and b-diversity of fungal communities across a
range of environments. Coupled with the fact that closed reference
approaches consistently estimated the expected richness and

taxonomy of the mock community in our analysis, we believe that
non-AM fungal ecologists should reconsider their default de novo
clustering approach, especially in well-characterized systems (e.g.
Ovaskainen et al., 2010). We recognize that reference-based
clustering may not always be the best option, as clustering and
taxonomic assignment depend on many factors, including the
specific algorithm employed, the evolutionary properties of the
sequences being analyzed (Kopylova et al., 2016; Westcott &
Schloss, 2015), and the fact that only a small fraction of the
estimated 1.5–6 million fungal species on Earth are currently
included in public sequence repositories (Halwachs et al., 2017;
Tedersoo et al., 2017). However, the growing use of standardized
barcoding regions (Schoch et al., 2012), coupled with the increas-
ing number of well-curated reference databases, suggests that the
performance of reference-based clustering will continue to
improve. Regardless of clustering approach, taxonomic identity
appears to be sensitive to the specific algorithm used, which
highlights the ongoing challenges associated with comparing
taxonomies across studies as well as clustering approaches. Despite
the consistent clustering and taxonomic assignment thresholds we
used, individual algorithms have variations (Methods S2) that can
impact results and interpretations. Recently, new methods have
been developed that avoid clustering approaches altogether (e.g.

(a) (b) (c)

(d) (e) (f)

CD-HIT

USEARCH NINJA NINJA/USEARCH

BLAST BLAST/CD-HIT

Fig. 2 Principal coordinates (PCo) analysis of fungal b-diversity between live leaf, soil, dead wood, and live wood habitats, when operational taxonomic units
(OTUs) were clustered by six different (a, d) de novo, (b, e) closed reference and (c, f) open reference clustering approaches. b-diversity was calculated by the
Bray-Curtis dissimilarity metric. OTU abundances were Hellinger transformed before dissimilarity calculation.
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DADA2; Callahan et al., 2016), which circumvent the need for
arbitrary thresholds to the increase accuracy and reproducibility of
fungal diversity estimates. Collectively, we believe the results
presented in this study, combined with the recent examples from
the AM fungal ecology literature (e.g.Davison et al., 2015), suggest
that the fungal research community could benefit from more
frequent use of reference-based clustering approaches moving
forward.
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