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    INTRODUCTION 

 Emerging infectious diseases in wildlife can poten-
tially reduce biodiversity, threaten human health, and 
cause economic losses (Daszak  2000 ), but wildlife 
management decisions are often necessary before the 
disease dynamics are fully understood. Although 
mathematical models can help to estimate disease 
dynamics and impacts, simple models may not accu-
rately capture complex dynamics, and complex models 
may be challenging to parameterize. Data collection 
on wild populations can be diffi cult owing to logisti-
cal challenges, expense, and risks of handling, both 
to individual animals and to veterinary staff. A mod-
eling approach is needed that can incorporate disparate 
information about populations and disease in complex 
systems, while leaving some parameters unspecifi ed. 

 An example of such an emerging infectious disease 
is the bovine tuberculosis (bTB,  Mycobacterium bovis ) 
outbreak in the lion ( Panthera leo ) population of 
Kruger National Park (KNP), South Africa. Exotic 
to sub- Saharan Africa, bTB probably was introduced 
to KNP around 1960, when free- roaming African 
 buffalo ( Syncerus caffer ) contracted the disease from 
domestic cattle in the southeast part of the park (Bengis 
et al.  1996 , De Vos et al.  2001 , Hofmeyr et al.  2006 ). 
Buffalo continue to be the primary maintenance host, 
although greater kudu ( Tragelaphus strepsiceros ) may 
also be a maintenance host under some conditions 
(Renwick et al.  2007 ). An additional dozen species in 
KNP have tested positive for bTB and are thought 
to be spillover hosts (de Garine- Wichatitsky et al. 
 2013 ). 

 In 1995, a lion in KNP was discovered to be infected 
with bTB (Keet et al.  1997 ). The discovery of bTB 
in lions caused concern among park management for 
multiple reasons. The KNP lion population is one of 
only a handful of large lion populations left in the 
world, and the potential of bTB to signifi cantly reduce 
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the population was unknown. Additionally, lions move 
across park borders, raising the possibility of spreading 
the disease among wildlife and domestic livestock and 
threatening key transboundary initiatives in southern 
Africa, such as the Great Limpopo Transfrontier 
Conservation Area (Wolmer  2003 ), which includes KNP 
as well as other national parks, communal land, and 
conservancies in South Africa, Mozambique, and 
Zimbabwe. 

 A disease assessment workshop was convened in 
2009 to assess the current state of knowledge about 
bTB in KNP ’ s lion population, to identify gaps in 
knowledge for future research, and to conduct predic-
tive simulation modeling (Keet et al.  2009 ). The result-
ant model paired lion demography with disease dynam-
ics, in which all disease parameters were estimated 
from known data where possible and by expert opinion 
where data were scarce or absent. Although the work-
shop successfully compiled available information about 
bTB in KNP ’ s lions, parameterized simulation models 
erroneously predicted major declines in the lion popu-
lation that have not occurred (Appendix S2: Fig. S21). 
The conclusion from this effort was that a different 
type of model was needed in which several key param-
eters could be left unspecifi ed. 

 Classical infectious disease models can sometimes 
provide insight into disease dynamics (Anderson and 
May  1991 , Keeling and Rohani  2007 ), but must make 
simplifying assumptions about the host and disease 
to be analytically tractable. Host populations are thus 
assumed to be well mixed and of fi xed size, and dis-
ease transmission rates between individuals must be 
uniform. However, many wildlife disease systems do 
not conform to these assumptions and classical models 
can be misleading (e.g., Eisinger and Thulke  2008 ), 
especially in group- living species like lions, where 
population contact structure has important ramifi ca-
tions for disease spread (Tompkins et al.  2011 ). 

 To address these limitations, more complex wildlife 
disease models include details about wildlife population 
spatial structure and contact patterns (e.g., Snäll et al. 
 2008 , Craft et al.  2009 , Hamede et al.  2009 ), using 
simulation and Monte Carlo methods to investigate 
disease dynamics in heterogeneous networks of indi-
viduals. However, these models typically require exten-
sive empirical data specifi c to the study system. When 
such data are not available, educated guesses and expert 
opinion are needed to specify parameters that cannot 
be excluded from the models. 

 The Approximate Bayesian Computation (ABC) 
modeling framework can address complex disease sys-
tems without specifying all system parameters or relying 
on educated guesses. ABC generates an approximate 
likelihood function, allowing statistical parameter esti-
mation when an explicit likelihood function is not 
available. This enables analysis of realistic stochastic 
models that incorporate nonlinear dynamics and dis-
parate information about host population structure, 

movement, behavior, and heterogeneous transmission 
rates. When empirical data are limited, ABC explores 
the logically complete space of the unspecifi ed 
parameters. 

 The ABC framework grew out of simple rejection 
algorithms that generate samples from probability 
distributions using large amounts of simulated data 
and summary statistics (Tavaré et al.  1997 , Pritchard 
et al.  1999 ). It has since been adopted and refi ned 
in the fi elds of population genetics (Hamilton et al. 
 2005 ), human epidemiology (Shriner et al.  2006 , Tanaka 
et al.  2006 , McKinley et al.  2009 ), livestock epide-
miology (Bekara et al.  2014 ), and ecology (Jabot and 
Chave  2009 , Scranton et al.  2014 ). An ABC technique 
using sequential Monte Carlo (ABC- SMC) is more 
computationally effi cient than its predecessors (Sisson 
et al.  2007 , Beaumont et al.  2009 , Toni et al.  2009 , 
Beaumont  2010 , Csilléry et al.  2010 ), and has recently 
been used to investigate costs to drug resistance in 
 Mycobacterium tuberculosis  (Luciani et al.  2009 ) and 
to estimate disease parameters for Ebola virus 
(McKinley et al.  2009 ), a macroparasite infection of 
domestic cats (Drovandi and Pettitt  2011 b  ), hospital- 
acquired staph infections (Drovandi and Pettitt  2011 a  ), 
and Severe Acute Respiratory Syndrome, SARS 
(Walker et al.  2010 ). 

 We demonstrate the use of ABC- SMC to determine 
the disease dynamics of bTB in lions in KNP based 
on spatial data of lions, population size, and disease 
prevalence across the park. We assumed little prior 
knowledge about the model ’ s disease parameters and 
investigated the full range of their possible values. In 
particular, we address whether bTB spreads primarily 
from buffalo to lion or from lion to lion, the long- 
term effect of bTB on lion population size and disease 
prevalence, and the implications for management of 
KNP ’ s lion population.  

  METHODS 

 Kruger National Park (KNP) is a 19,485- km 2  wildlife 
reserve located in the northeastern part of South Africa 
(22°19′–25°32′ S, 30°52′–32°03′ E) and is part of the 
Great Limpopo Transfrontier Conservation Area, a 
protected area that also comprises national parks and 
limited- use lands in Mozambique and Zimbabwe. Two 
major permanent rivers, the Sabie and the Olifants, 
cut across KNP from west to east and reduce animal 
movements northward and southward, effectively divid-
ing the park into three sectors: the northern, central, 
and southern regions. 

 Bovine tuberculosis (bTB) has spread from the south 
of the park northward via the buffalo population, 
and genomic analysis indicated that lions originally 
contracted bTB from buffalo (Keet et al.  1997 ). Lions 
are also suspected of transmitting bTB from one to 
another via aerosol transmission while in close prox-
imity or via wounds during fi ghts (Kaneene and Pfeiffer 
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 2006 , Keet et al.  1998 ). Lions exhibiting symptoms 
of bTB usually die within several years (Keet et al. 
 2000 , Renwick et al.  2007 , Trinkel et al.  2011 ). Emergent 
bTB has raised concerns about lion population viability 
in KNP because diseases have been implicated in 
declines of lions in protected areas elsewhere (Munson 
et al.  2008 ). 

  Lion demographic simulation 

 We modifi ed an existing individual- based lion 
 stochastic simulation model called SimSimba 
(Whitman et al.  2004 ,  2007 ) to incorporate bTB 
disease dynamics. Individual lions stochastically 
 progress in half- year time steps through life stages, 
including birth, maturation, dispersal, reproduction, 
and death. The modeled lions form prides and coali-
tions that mimic the social patterns of actual lions 
by moving around on a user- defi ned spatial lattice 
of territories and interacting with one another; males 
fi ght to compete for access to females and commit 
infanticide when they take over a pride with cubs. 
Parameterization of lion demographics in SimSimba 
used KNP data when available and was supplemented 
with data on lions from the Serengeti (see Appendix 
S1). Parameterization was validated by running the 
model without disease and comparing lion age 
 structure, sex ratios, and population size to known 

demographic values in KNP. Ignoring the disease 
component was deemed reasonable for parameter-
izing the demographic model, as bTB has had little 
documented effect on lions at the population level 
(Ferreira and Funston  2010 ). 

 A landscape map of model territories was created 
to mimic the geography and lion density of Kruger 
National Park (Fig.  1 ). The lion territories were dis-
tributed by dividing the estimated number of actual 
lions in each of six regions of the park (northeast, 
northwest, central east, central west, southeast, and 
southwest; Ferreira and Funston  2010 ) by estimated 
pride sizes, and were arranged in a honeycomb pat-
tern in proportion to the physical dimensions of the 
park.   

  Disease model 

 Each modeled lion exists in one of three disease 
states: susceptible, exposed, or infectious. All lions 
begin as susceptible and stochastically transition to 
exposed, whereupon they are considered to have a 
latent form of the disease that has no effect on mor-
tality or fecundity. Exposed lions then stochastically 
transition to infectious, transmit the disease to sus-
ceptibles, and suffer increased mortality. We made 
the explicit assumption that lions in the latent state 
could not transmit the disease, based on  Mycobacteria 

 FIG. 1 .              The geographic shape of Kruger National Park, South Africa (left), trisected by the Olifants and Sabie Rivers (light lines). 
Model schematic of Kruger National Park (right); each circle represents a lion territory and potential pride, while lines indicate 
physical connectance of those territories. 
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tuberculosis  pathogenesis in humans (Bates  1984 ). We 
also assumed that exposed and infectious lions never 
returned to the susceptible state nor entered an immune 
state. 

 The transition from susceptible to exposed is based 
on three parameters:  B  defi nes the probability of trans-
mission from the infected buffalo population to a 
susceptible lion;  L  defi nes the probability of transmis-
sion from an infected lion to a susceptible lion;  O  
defi nes the probability of an encounter between two 
lions each time step. Two lions within the same social 
group have a 100% probability of encounter. Lions 
in neighboring groups have a probability of encounter 
between 0 and 1, as do nomadic lions passing through 
resident lions’ territories. Resident lions from non- 
adjacent territories are assumed not to encounter each 
other. 

 The transition from exposed to infectious at each 
time step is governed by parameter  E , which is 
comparable to the transition parameter of classical 
SIR disease models. The increased mortality of 
infectious lions was modeled with parameter  I , which 
describes the exponential probability of dying from 
disease each time step and is additive to the 
 background mortality imposed by demographic 
 specifications. Formally, for each lion in each time 
step: 

       

       

       

where prev buff  is the prevalence of bTB in buffalo in 
the area,  i  is the number of infectious lions in the 
same social group, and  j  is the number of infectious 
lions in neighboring groups and local nomads. The 

disease dynamics parameters ( B ,  L ,  O ,  E , and  I ) are 
summarized in Fig.  2 .  

 We set the prevalence of bTB in buffalo to follow 
logistic curves fi tted to match the observed prevalence 
in each region of the park in 1991–1992 and 1998, 
with an asymptote of 0.67; Appendix S3: Fig. S31 
(De Vos et al.  2001 , Rodwell et al.  2001 ). These curves 
were then used as input to the lion demographic dis-
ease model to compute the probability of disease 
transmission to a lion from infectious buffalo; the rate 
that lions become exposed to bTB from buffalo in a 
given region at a given time is the product of the 
prevalence in buffalo in that region at that time and 
parameter  B .  

  Observed fi eld data 

 The fi eld data used to compare results from the 
ABC- SMC simulations (Table  1 ) consist fi rst of a set 
bTB prevalence data (Keet et al.  2000 ) that were 
obtained by tuberculin testing 125 “repeat- offender” 
lions in good physical condition. These lions have 
caused park management repeated problem, such as 
killing cattle or leaving the park, and are brought to 
the park veterinarians for euthanizing. Although not 
a perfect random sample, these lions provide the best 
available estimates, as tuberculin testing requires 
repeated handling of lions three days apart. We excluded 
prevalence data on sick and emaciated lions because 
they would have biased our data toward high preva-
lence rates. The tuberculin test for lions has a very 
high rate of detection in animals in good condition 
(Keet et al.  2010 ).  

 The second set of fi eld data consists of lion popula-
tion surveys, conducted using call- up stations. The 
surveys were conducted in the 1970s and again in 
2005–2006 (Ferreira and Funston  2010 ). There was no 

pr(susceptible→ exposed)=B ⋅prevbuff+
[

1− (1−L)i+jO
]

pr (exposed→ infectious)=E

pr (infectious→dead)= I

 FIG. 2 .              Disease dynamics model parameters:  L  is the probability of transmission of bovine tuberculosis to a lion from another 
lion;  O  indicates the rate of contact between lions not in the same pride;  B  describes the probability of bovine tuberculosis 
transmission from the buffalo population;  E  is the transition rate of an exposed lion to the infectious state; and  I  is the mortality 
rate of infectious lions. 
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detectable change in lion population size between the 
1970s surveys and those conducted in 2005–2006 
(Ferreira and Funston  2010 ).  

  ABC- SMC algorithm 

 We used ABC- SMC to determine posterior distribu-
tions of the disease dynamics parameters in the Kruger 
lion system. The algorithm searched the space of all 
possible disease parameters ( B ,  L ,  O ,  E ,  I ) by choos-
ing a set of random parameter values, and then itera-
tively running the SimSimba- Disease model. Model 
results were compared against fi eld data (Table  1 ) to 
fi nd the parameter sets with highest likelihood, and 
then these parameter values were perturbed to obtain 
new values for the next round. 

 In Bayesian methods, a posterior distribution  f (θ| x  0 ) 
of model parameters θ is taken from a parameter 
space Θ given the observed data  x  0 . Through Bayes’ 
theorem,  f (θ| x  0 ) is proportional to  f ( x  0 |θ) π(θ), where 
 f ( x  0 |θ) is the likelihood function and π(θ) is the 
prior distribution of model parameters. The posterior 
 f (θ| x  0 ) is approximated with Monte Carlo techniques 
to draw a large number of possible samples from 
 f ( x  0 |θ) π(θ). This is done by repeatedly drawing a 
candidate parameter set, θ*, from the prior density 
and simulating data,  x *, using a model  g ( x *| θ*). 
In ABC, if the simulated data suffi ciently match 
the observed data  x  0 , θ* is accepted and becomes 
part of the sampled posterior distribution (Sisson 
et al.  2007 ). 

 In SMC, each parameter set is termed a “particle.” 
A population of particles θ 1 , …, θ  N   is drawn from 
the parameter space Θ according to the parameters’ 
prior distribution. Data  x * are simulated for each 
particle, as in all ABC methods, and distance meas-
ure  D , a measure of closeness between the simulated 
data,  x *, and the observed data,  x  0 , is calculated. 
The tolerance, ε, is defi ned as the maximum value 
of  D  that will allow the particle ’ s acceptance. The 
tolerance is reduced at each iteration, improving the 
fi t between the resulting distribution and the pos-
terior distribution. The set of accepted particles is 
weighted and smoothed to form the prior distribu-
tion for the next iteration, whereupon a new set of 
particles is drawn, ε is decreased, and the process 

is repeated until the desired tolerance is reached. 
This process explores complex parameter spaces more 
quickly than previous ABC algorithms in which 
particles are correlated with one another (Sisson 
et al.  2007 ). 

 We used a modifi ed version of the original ABC- 
SMC algorithm that selects a fi xed fraction of the 
best particles in each round to determine the value 
of ε for that round. This modifi cation speeds up pos-
terior distribution convergence that might otherwise 
stall with poorly chosen a priori ε values (Drovandi 
and Pettitt  2011 a  ).  

  Our algorithm runs as follows: 

    1)     Our parameter space consists of the disease param-
eters Θ = { B ,  L ,  O ,  E ,  I } and each particle is 
a point in that space. We assign fl at priors for 
 B ,  L ,  O ,  E , and  I  from uniform distributions on 
[0,1]. We draw 50,000 independent particles from 
Θ. 

  2)     We set the parameter values in SimSimba according 
to the particle ’ s associated values and run the model 
from 1960 to 2006 (46 years, 92 time steps). 

  3)     For each run of SimSimba, we randomly sample 
22, 39, and 64 lions in the north (n), central (c), 
and south (s) regions, respectively, in the year 
1999. We record the number of exposed or infec-
tious lions in each sample as  F  n ,  F  c , and  F  s . We 
also record the simulated population size of the 
north, central, and south region in 1960 and in 
2006, denoting the difference in population sizes 
as  N  n ,  N  c , and  N  s , respectively. The output from 
each run is therefore  x*  = ( F  n ,  F  c ,  F  s ,  N  n ,  N  c , 
 N  s ). 

  4)     We compare observed data  x  0  = (0, 18, 50, 0, 0, 
0) (from Table  1 ) and  x*  for each run, transform-
ing both  x  0  and  x*  with partial least squares regres-
sion so as to more equally consider all six components 
(Wegmann et al.  2009 ). We then calculate  D  as the 
Euclidean distance between the transformed  x   0   and 
the transformed  x* . 

  5)     We sort the 50,000 particles by  D  and accept the 
1000 particles with the least difference between 
simulated outcomes and our observed data. For 
each of the 1000 accepted particles, we calculate 

 TABLE 1 .    Observational data on bovine tuberculosis prevalence and lion population size. 

 Data  Value  Method  Reference 

 bTB prevalence in lions
South region (1998–2000)
Central region (1998–2000) 

 78.1% (50/64)
46.2% (18/39) 

 single cervical intradermal test-
ing of repeat offender lions in 
good condition 

 Keet et al. ( 2000 ,  2010 ) 

 North region (1998–2000)
Change in lion population size 

 between 1976–1978 and 
2005–2006 

 0.0% (0/22)
no detectable change 

 full- park survey using call- up 
stations 

 Ferreira and Funston ( 2010 ) 
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weights  w  ( i ) . In the fi rst round, each particle is 
weighted equally. Subsequently, 

       

where  t  represents the current round,  t − 1 the pre-
vious round, and  K   t   is the kernel, or transition 
density function, for round  t . This equation computes 
a current particle ’ s weight based on the distribution 
of the previous round ’ s particles and the probability 
that it derived from each of those particles. We 
then normalize the weights to sum to 1. 

  6)     We generate 50, 000 new particles from the weighted 
distribution of the 1000 particles accepted in the 
prior round. For each new particle, we randomly 
choose an accepted particle and perturb it using 
the uniform perturbation kernel  K   t   = α U (−1,1) with 
α as one standard deviation of each parameter 
value. This perturbation smoothes and spreads the 
accepted distribution to explore nearby parameter 
space. 

  7)     We return to Step 2 and repeat until the new dis-
tribution no longer departs signifi cantly from the 
previous iteration, which is defi ned as a change 
between rounds in the mean and standard deviation 
of each parameter of less than 0.05 (Lenormand 
et al.  2013 ). 

  8)     We examine the marginal probabilities of the joint 
distribution on our fi ve parameters.   

 We report results as means, medians, and 95% cred-
ible intervals of the posterior distributions. Credible 
intervals are analogous to the confi dence intervals of 
frequentist statistics; there is a 95% certainty that the 
true value lies within a 95% credible interval (Edwards 
et al.  1963 ). 

 SimSimba simulations were run at the University of 
Minnesota Supercomputing Institute. Transformation, 
weighting, and perturbation of parameter sets was 
performed in R on a laptop computer using packages 
 MASS, car , and  pls  (Venables and Ripley  2002 , Fox 
and Weisberg  2011 , Mevik et al.  2011 , R Core Team 
 2012 ). 

 After running the ABC- SMC algorithm, we per-
formed a cross- validation using the “cv4abc” function 
in the R package  abc  (Csilléry et al.  2012 ). This pro-
cedure used the simulation results from the fi rst round 
of particles, which were evenly distributed across the 
parameter space, to determine whether the modeling 
framework can accurately estimate parameter values. 
See Appendix S4 for details. 

 To check for the possibility of additional solutions, 
we excluded the region of parameter space containing 
the fi rst solution and reran the ABC- SMC algorithm 
on the reduced parameter space. For effi ciency, we 
ran only 20 ,000 particles per round instead of 50, 000. 

If a good match to the observed data was found, we 
reran the ABC- SMC algorithm, until the model con-
verged on another solution or until there was no 
convergence. 

 For each valid solution, we took the 1000 parameter 
sets from the posterior distribution of the ABC- SMC 
algorithm and ran them in SimSimba from 1960 to 
2060 (100 years, 200 time steps) to forecast the impact 
of bTB on disease prevalence and lion population size. 
To determine equilibrium impact of the disease, we 
ran the simulations from 1960 to 2260 (300 years, 
600 time steps). 

 To determine whether lions are maintenance or 
spillover hosts, we repeated the forecasting procedure 
while removing all disease from the buffalo from 2010 
onward by eliminating buffalo- to- lion transmission and 
only allowing the disease to be transmitted from lion 
to lion. 

 To see how lion- to- lion transmission affects disease 
spread and population size, we took the 1000 parameter 
sets from the posterior distribution and set  L  to zero. 
We compared the results for simulations with  L  > 0 
and  L  = 0 for six replicates for each parameter set, 
using  t  tests blocked by parameter set. 

 Code for the SimSimba disease model (in C++) and 
for performing the ABC- SMC algorithm and cross- 
validation (in R) is  available online . 7    

  RESULTS 

 Our analysis revealed that two parameters,  L  and 
 O , were not identifi able with this model (see Appendix 
S4 for details).  L , the rate of lion- to- lion transmis-
sion of bovine tuberculosis (bTB), plays little role 
in model dynamics when very few individuals are 
infectious and transmitting the disease. The value of 
 L  is also irrelevant when almost all individuals are 
infectious and transmitting the disease. Further, 
buffalo- to- lion spread of the disease dominates disease 
dynamics when  L  is small and  B , the rate of trans-
mission from buffalo to lions, is relatively large. In 
all other cases, the population of lions goes extinct, 
and  L  is not identifi able. Because  O , the contact 
rate among non- pride lions, modifi es the effect of 
 L ,  O  is also not identifi able. Although our model 
cannot determine rates of lion- to- lion transmission 
of bTB or the contact rate between non- pride lions, 
we can still infer the other three disease parameters 
and characterize disease dynamics of the system as 
a whole. 

 In our initial run of the ABC- SMC algorithm, 
parameter distributions converged after fi ve rounds 
(Appendix S3: Fig. S32), with observed data values 
falling into the middle of model summary statistics 
distributions (Appendix S3: Figs. S33 and S34). After 
excluding this area of parameter space and rerunning 

w
(i)

t
=

1
∑

J w
(j)

t−1Kt

(

!
(j)

t−1,!(i)
t

)

7  http://dx.doi.org/10.6084/m9.fi gshare.1418430
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the algorithm, we discovered another region with 
equally low distance measures (Appendix S5: Figs. S53 
and S54). When we excluded both solutions and reran 
the algorithm a third time, the model converged on 
an area of parameter space where distance scores 
were markedly higher (Appendix S5: Fig. S55), indi-
cating a poor match to observed data (Appendix S5: 
Fig. S56). 

  Solution 1 

 Mirroring buffalo prevalence patterns, lion preva-
lence showed a logistic increase in each region of 
the park (Fig.  3 ), while lion population size decreased 
slightly (Fig.  4 ). Disease dynamics in this system 
were largely driven by two parameters. The trans-
mission rate between an infected buffalo and a sus-
ceptible lion,  B , drove the disease prevalence in lions 
(Appendix S3: Table S31, Figs. S35 and S36). ABC- 
SMC converged on a stable posterior distribution 
for  B  with mean 0.60, median 0.61, and 95% credible 
interval of [0.17–0.91] (Fig.  5 ). Assuming a contact 
rate of one buffalo per six- month period and a stably 
infected buffalo population, this translates to an 
average annual exposure rate of 0.64 per individual 
lion from buffalo consumption (95% CI 
[0.21–0.85]).    

 The rate that lions transition from exposed to infec-
tious,  E , drove changes in lion population size 
(Appendix S3: Table S32, Figs. S37 and S38). ABC- 
SMC converged on a stable distribution for  E  with 
mean 0.0068 (median 0.0056, 95% CI [0.0003–0.0188]; 

Fig.  5 ). This is equivalent to an annual per lion rate 
of transition from exposed to infectious state of 0.014 
(95% CI [0.0006–0.037%]) and a mean duration of 
latency of 74 years (95% CI [27–1670 years]), much 
longer than a lion ’ s lifespan. The mean fraction of 
exposed individuals that transitioned to infectious in 
their lifetimes was 0.051 (95% CI [0.002–0.143]; 
Appendix S3: Fig. S39). 

 Parameter  I , the rate at which infectious lions die 
of bTB, averaged 0.58 (95% CI [0.07–0.97]). This is 
equivalent to an average annual disease mortality rate 
of 82% (95% CI [14–100%]). Parameter  L  ’ s posterior 
distribution had mean 0.44 (95% CI [0.02–0.93]) and 
parameter  O  had mean 0.46 (95% CI [0.02–0.95]); both 
retained fairly fl at posterior distributions and are, in 
any case, not identifi able (Fig.  5 ).  

  Solution 2 

 When we excluded the region of parameter space 
that contained the fi rst solution ( E  < 0.15), we found 
a second solution (Appendix S5: Figs. S53 and S54). 
The algorithm converged with very low  L  values (mean 
0.008, median 0.006, 95% CI [0.000–0.0226]).  B  values 
(mean 0.227, median 0.143, 95% CI [0.003–0.804]) were 
higher than  L  values, indicating that the spread of 
bTB was again governed primarily by buffalo- to- lion 
transmission. 

 Parameter  E  had a posterior distribution of mean 
0.494, median 0.467, and 95% CI [0.164–0.948]. The 
posterior distribution for  I  (mean 0.035, median 
0.017, 95% CI [0.001–0.163]) indicated low mortality 
from bTB for this solution, equivalent to a 6.9% 
mortality rate per year (95% CI [0.2–29.9%]) and a 
mean duration of infectiousness of 14.3 years (95% 
CI [3.1–500]), on par with the maximum lifespan 
of wild lions. Parameter  O  had posterior distribution 

 FIG. 3 .              Modeled prevalence of bovine tuberculosis in the 
lion population for the south, central, and north regions 
shows that prevalence across the park asymptotes at around 
.08 by 2050. Prevalence values are shaded by likelihood 
density, with highest likelihood shaded dark and lowest 
likelihood pale. White  X’ s indicate observed prevalence in the 
south, central, and north regions, respectively (Keet et al. 
 2010 ). 

 FIG. 4 .              Modeled number of total adult and subadult lions in 
the population, those that are exposed, and those that are 
infectious. Values are shaded by likelihood density, with highest 
likelihood shaded dark and lowest likelihood pale. 
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of mean 0.323, median 0.256, and 95% CI 
[0.013–0.905]. 

 Due to the biological infeasibility of such low mor-
tality from bTB (see   Discussion  ), we did not conduct 
further analyses or forecasting of solution 2.  

  Forecasting 

 The forecasting simulations for solution 1 suggest 
that the lion population is not in danger of crashing 
from the introduction of bTB alone (Fig.  4 ). Results 
suggest a 3% decline over the next 50 years due to 
increased mortality from bTB (95% CI [−0.09–0.14]). 
The long- term forecast indicates that the lion popula-
tion will reach a new long- term carrying capacity at 
this slightly depressed level. 

 Mirroring the rise of bTB in buffalo, disease preva-
lence in lions increased logistically in all three regions. 
Most lions were exposed to the disease by the mid- 
2020s, and 85% of all lions were exposed by 2060 
(Fig.  3 ; 95% CI [74–92%]). 

 When we simulated a disease- eradication program 
in buffalo, there was an immediate steep drop in lion 
prevalence (Fig.  6 ), and the disease was eradicated 
from lions within 20 years. The lion population size 
declined slightly as the disease continued to progress 
in previously exposed individuals but then recovered 
to pre- disease levels (Fig.  6 ).  

 When infectious lions were allowed to transmit the 
disease to susceptible lions, bTB prevalence was slightly 
higher than when transmission was strictly from buf-
falo to lion (mean difference in 1999 = 0.0474, SEM 
= 0.0022,  P  < 0.0001) and the total lion population 
size showed a minor decline (mean difference in 2006 
= 3.78 individuals, SEM = 1.20,  P  < 0.0001).   

  DISCUSSION 

 Using ABC- SMC, we made important inferences 
about bovine tuberculosis (bTB) dynamics in the lion 
population in Kruger National Park (KNP), despite 
lacking empirical knowledge about the transmission 
and progression of the disease. 

  Solutions found by ABC- SMC 

 We identifi ed two areas in our parameter space where 
model simulations matched lion population and bTB 
prevalence data. The fi rst solution describes a situation 
in which latency of bTB in lions is long. Most lions 
that are exposed to the disease remain in this latent 
state in which they neither experience symptoms of 
the disease nor transmit it to others. Only about 5% 
of lions that become exposed eventually develop symp-
toms and become contagious; the rest die from other 
causes while still in the latent stage. 

 Because so few lions are contagious at any point 
in time, lion- to- lion transmission is unimportant for 
disease spread at the population level. Even if a single 
infectious lion exposed all of its pridemates and all 
neighboring pride lions to the disease, the prolonged 
latency of the disease would likely prevent more than 
one other lion from becoming infectious. Note that 
because the lion- to- lion transmission rate,  L , is 

 FIG. 5 .              Posterior density distributions for the fi ve model disease parameters. Horizontal dashed lines indicate initial parameter 
distributions (“priors”). Parameters  B  (bovine tuberculosis transmission rate from buffalo to lion) and  E  (transition rate of an 
exposed lion to the infectious state) show a peaked distribution that deviates substantially from their priors, indicating that these 
parameters are most informed by the data, whereas parameters  L  (transmission rate from lion to lion),  O  (contact rate between lions 
not of the same pride), and  I  (disease mortality rate) do not deviate as much from their priors. 

 FIG. 6 .              Modeled number of total adult and subadult lions in 
the population, and those that are exposed. The prevalence of 
bovine tuberculosis in buffalo is set to 0 in the year 2010. 
Subsequently, the disease clears from lions and the lion 
population rebounds. Values are shaded by likelihood density, 
with highest likelihood shaded dark and lowest likelihood pale. 
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unidentifi able in our model, we cannot deduce the 
actual rate, or effi ciency, of lion- to- lion transmission. 
bTB might be extremely contagious in infectious lions, 
or it might be relatively non- contagious. The model 
suggests that the actual lion- to- lion transmission rate 
is unimportant for disease dynamics because the vast 
majority of lions exposed to the disease never progress 
to infectious. 

 This solution also describes a high mortality rate 
for lions in the infectious state. An 82% annual disease 
mortality is equivalent to an expected lifespan of 10–15 
months following onset of bTB symptoms and con-
tagiousness. Thus the few lions that do become 
 infectious die before they can spread the disease 
extensively. 

 Because lion- to- lion transmission of bTB is infre-
quent, transmission results primarily from infected prey, 
and we estimate that a lion has a 64% chance per 
year of becoming exposed to the disease by consuming 
infected buffalo. Consistent with this fi nding, the bTB 
prevalence patterns in lions refl ect those in buffalo, 
with highest prevalence in the south and lowest in 
the north. 

 The second solution describes a situation in which 
disease latency is shorter and disease mortality is 
very low. Lions progress from the exposed to the 
infectious state at a rate of 0.74 per year, spending 
1–2.5 years in the exposed state. Each lion that 
becomes infectious has just a 6.9% chance of dying 
each year and remains infectious for an average of 
14.3 years, longer than most wild lions’ lifespans, 
meaning that lions showing symptoms of the disease 
usually die from causes other than bTB. At the same 
time, lion- to- lion transmission rates in solution 2 are 
very low: a lion that comes into contact with a con-
tagious lion has just a 1.6% chance each year of 
becoming exposed to the disease. Over a 10- year 
period, an infectious lion would expose a susceptible 
pridemate just 15% of the time. Exposure of lions 
to bTB from eating infected buffalo is estimated to 
be 40.2% per year. Thus, as with solution 1, the 
disease dynamics are dominated by buffalo- to- lion 
transmission in solution 2. 

 Although both solutions 1 and 2 describe statisti-
cally valid sets of disease parameters that are consistent 
with lion population size and bTB prevalence, solution 
2 does not agree with additional empirical data about 
bTB- induced lion mortality. Solution 2 is characterized 
by a very low mortality rate of bTB after transition-
ing to the infectious state. However, veterinary data 
show that once lions begin to show symptoms of bTB, 
they deteriorate quickly, and typically die within fi ve 
years (Keet et al.  2000 , Renwick et al.  2007 , Trinkel 
et al.  2011 ). Even at the top of the 95% credible 
interval for disease mortality in solution 2, annual 
mortality is 29.9% per year, and about one- sixth of 
infectious lions would survive past fi ve years. As a 
result, solution 1 describes the most biologically 

reasonable set of disease parameters for bTB dynamics 
in KNP ’ s lion population. 

 Our multi- step approach to fi nd successive solutions 
in the parameter space is not a pure ABC algorithm. 
A more elegant method would use a single ABC 
algorithm that converges on a multimodal distribu-
tion, which in this case would have identifi ed two 
modes. Three algorithmic choices contributed to our 
fi nding only a single mode at a time. First, we chose 
a uniform prior on the principle of “insuffi cient rea-
son” (Kass and Wasserman  1996 ). We potentially 
could have specifi ed a prior such that areas of high 
nonlinearity received greater weight, but we had no 
reason to believe that the area of solution 2 was 
more nonlinear than other parts of parameter space. 
Second we chose the perturbation kernel as a uniform 
distribution. A distribution with a more central ten-
dency, such as a Gaussian, would reduce the spread 
of particles from round to round and might have 
allowed the algorithm to converge on a bimodal dis-
tribution, albeit more slowly. Third, we accepted only 
2% of particles in each round (1000/50, 000), which 
sped convergence, but quickly eliminated particles in 
solution 2 that would have benefi tted from additional 
exploration. The fi rst round contained ~3000 particles 
in solution 2. But only 16 made it into the second 
round based on the 2% cut- off, and no particles in 
solution 2 survived from the second round to the 
third round. Unfortunately, there is no known way 
to estimate when decisions that accelerate computa-
tion will risk excluding a secondary solution spanning 
a relatively small fraction of parameter space. Finally, 
an ABC Markov chain Monte Carlo (MCMC) algo-
rithm might also have identifi ed a bimodal distribu-
tion, but it, too, may have only found the fi rst 
solution.  

  Implications of model results 

 The workshop model (Keet et al.  2009 ) that pre-
dicted an unobserved crash in the lion population 
(Fig. S21) appears to have overestimated the rate of 
transition from the exposed (latent) state to the infec-
tious state. This overestimation resulted from personal 
observations of dying lions and one small- scale study, 
suggesting that expert opinion must be used cautiously 
when combined with complex models. 

 By contrast, we assumed nothing about the rate of 
transition from the exposed to the infectious state ( E ) 
and instead explored all possible rates. In the most 
biologically reasonable solution, only small values of 
 E  resulted in dynamics that matched empirical obser-
vations, so we can reasonably conclude that  E  must 
be small. In fact, while lifetime transition probabilities 
of tuberculosis are unknown for wildlife, the observed 
rate of 0.051 in our model is comparable to the rate 
of 1 out of 10 in untreated humans (Appendix S3: 
Fig. S39); Bates  1984 . 
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 Our model also suggests that bTB is primarily trans-
mitted from buffalo to lions, whereas transmission 
from one lion to another is infrequent. This result is 
consistent with veterinary fi ndings that infected lions 
only occasionally show pulmonary lesions, implying 
infrequent aerosol transmission (Keet et al.  2000 ). Prior 
studies have been inconclusive as to whether lions are 
maintenance or spillover hosts of bTB (Michel et al. 
 2006 ), but our model suggests that lions constitute a 
spillover host, in agreement with other studies (Renwick 
et al.  2007 , Maas et al.  2012 ). 

 We forecast that most lions will be exposed to bTB 
over the next few decades. However, the disease will 
remain latent in the majority of lions because of the 
low transition rate from exposed to infectious. The 
number of sick lions will increase in the central and 
northern regions, where the disease has not yet reached 
equilibrium. However, even at equilibrium, we predict 
that only about a dozen lions will die from bTB across 
the park annually (Fig.  4 ). In total, the lion popula-
tion size will only decrease by about 3% over the 
next 50 years, but such a small effect will be diffi cult 
to detect from short- term monitoring (Jolles et al. 
 2005 , Ferreira and Funston  2010 ). 

 In addition to revealing disease patterns, the results 
from our model can be used to infer the primary driv-
ing variables of a system. In the case of the KNP lions, 
we found that parameter  E , the rate of transition from 
exposed to infectious, was the primary driver of lion 
population size. With this knowledge, we further infer 
that changes to the system that increase  E , such as 
coinfection with new diseases, might cause greater bTB 
mortality. In humans, for example, coinfection with the 
human immunodefi ciency virus (HIV) causes an increase 
in the transition rate from the latent stage of tuberculosis 
( M. tuberculosis ) to the infected state (Lawn and Zumla 
 2011 ). While coinfection with the related feline immu-
nodefi ciency virus (FIV) does not appear to have a 
similar effect on bTB progression in lions (Maas et al. 
 2012 ), other combinations of disease are known to 
increase lion mortality (Munson et al.  2008 ). 

 Parameter  B , the rate of disease transmission from 
buffalo to lions, was the primary driver of disease 
prevalence in lions. Changes in the system that increase 
 B  may also increase the incidence of bTB in the lion 
population. Drought, for example, causes the fraction 
of infectious buffalo in the park to increase, as buf-
falo are stressed by food limitation and increased 
endoparasite load (Caron et al.  2003 ). As a result, 
lionesses kill four times as many buffalo during droughts 
(Funston and Mills  2006 ). We therefore expect that 
the increase in bTB prevalence in lions in the central 
and northern areas of KNP to accelerate during 
droughts. 

 Information on driving variables also allows for 
practical management recommendations. Because our 
model shows that buffalo are the primary source of 
bTB in lions, recommendations for controlling the 

disease in lions should focus on reducing buffalo- to- 
lion transmission. In KNP, culling and quarantining 
buffalo is not feasible, and so the development of a 
vaccine for buffalo might be one recommendation. 
Given the limited impact of the disease on the lion 
population, however, the expense of vaccine develop-
ment for the sole purpose of protecting lions may not 
be justifi ed. On the other hand, vaccination might be 
warranted when considering the combined effects of 
bTB on the KNP system, such as the risk of bTB 
spread to other wildlife and livestock populations and 
policy implications for management agreements among 
South Africa, Mozambique, and Zimbabwe, the co- 
managers of the Great Limpopo Transfrontier 
Conservation Area.  

  Testing model results 

 The results of our modeling efforts might be seen 
as hypotheses that can now be empirically tested. In 
particular, we hypothesize that most (>95%) lions that 
have been exposed to the disease are not symptomatic 
or contagious. We hypothesize that once a lion becomes 
symptomatic, the mortality rate is high, with lions 
typically dying an average of less than year and a 
half after symptom onset. We also hypothesize that 
transmission from infected buffalo to lions is fairly 
effi cient, with a 64% chance that a lion feeding on 
infected buffalo becomes exposed in a given year. 

 To test the fraction of exposed lions that show 
symptoms of bTB, it is fi rst necessary to identify indi-
viduals that test positive for the disease. The best 
method for determining exposure to bTB in lions is 
a skin test, similar to that in humans, that requires 
the injection of tuberculin with a follow- up observa-
tion 72 hours later (Keet et al.  2010 ). This test requires 
the immobilization and confi nement of each wild lion 
to an enclosure, where it is kept for three days, immo-
bilized again, then moved and released. In the process, 
lions can be assessed for bTB symptoms: weight loss, 
swollen joints, hygromas at the elbows, and poor heal-
ing (Renwick et al.  2007 ). A high fraction of bTB- 
positive lions without bTB symptoms would support 
the hypothesis of a low rate of transition from the 
exposed to the infectious state. 

 To measure the mortality rate of lions that have 
entered the infectious state, an intensive ground effort 
would be needed to systematically monitor the condi-
tion of a large number of lions. Once an individual 
exhibited symptoms of bTB, it should be observed 
repeatedly until death. But because so few lions are 
likely to become infectious and because symptoms of 
bTB in live lions are nonspecifi c, regular surveys should 
include hundreds of lions to ensure observations of 
the complete duration of infectiousness. 

 To ascertain the rate of bTB transmission from buf-
falo to lions, lions could be sampled for disease expo-
sure in areas of contrasting prevalence in buffalo, 



January 2016 WILDLIFE DISEASE DYNAMICS USING ABC 305

focusing on young lions, so as to estimate the time 
between the onset of meat eating and infection. 

 Our model also predicts that the prevalence of bTB 
in lions will slowly rise in the central and northern 
parts of KNP and level off around 2020 and 2040, 
respectively. Data published subsequent to the analysis 
in this paper support this increase in the north, with 
a 0.13 prevalence ( n  = 31) by 2003 and 0.41 ( n  = 
17) by 2009 (Maas et al.  2012 ). Prevalence rates for 
the central region were unavailable. By comparison, 
our model predicted that prevalence in the north would 
reach 0.12 (95% CI [0.05–0.26]) in 2003 and 0.21 (95% 
CI [0.11–0.39]) in 2009.  

  Model assumptions 

 We acknowledge that our results rely on implicit 
assumptions arising from the demographic simulation 
model and the disease model. SimSimba uses a number 
of parameters (Appendix S1) that describe lion demog-
raphy and social behavior and affect our results. It 
is likely, however, that the model and parameter values 
provide a reasonable interpretation of KNP lion 
dynamics. SimSimba was developed to realistically 
mimic Serengeti lion population dynamics, age struc-
ture, and sex ratios that have been observed in detail 
in ~5000 lions over four decades (Whitman et al. 
 2004 ). It was modifi ed to incorporate as much KNP 
data as possible and was validated by comparison 
with static KNP demographic data. Lion model param-
eters have previously been altered to describe specifi c 
demographic and ecological conditions of various dif-
ferent lion populations and feline species, and SimSimba 
outputs have repeatedly been found to be robust 
(Whitman et al.  2007 , Packer et al.  2009 , Brink  2010 ). 
Most parameters are based on extensive empirical 
data, and conclusions do not appear to be overly 
sensitive to modifi cations of any of the unmeasured 
variables. 

 Our disease model makes several assumptions. We 
assume that once lions become infectious, they sub-
sequently die without any chance of developing immu-
nity. We also assume that the timing of infectiousness 
of bTB in lions corresponds with the timing of their 
increased mortality from the disease. These assump-
tions are based on the epidemiology and pathogenesis 
of tuberculosis in humans and other animals (Bates 
 1984 ). We also assume that there was no feedback 
between lions and buffalos; in particular, the preva-
lence of bTB in buffalo was not affected by lion 
population size in our model. Buffalo population size 
in KNP is believed to be controlled both by preda-
tion and availability of food (Funston and Mills  2006 ), 
so a future decrease in lion population size could 
cause an increase in buffalo population. However, it 
is unclear whether a change in buffalo population 
size would have a measurable effect on bTB prevalence 
in buffalo. 

 We assume a uniform prevalence of bTB in buf-
falo in each region of KNP, although herds differ 
in their levels of infection (Rodwell et al.  2001 ). We 
also assume that lion contact with buffalo remains 
constant through time and that buffalo are the only 
prey species important for transmitting bTB to lions. 
We have no evidence that differential disease preva-
lence in buffalo herds follows any pattern that would 
increase or decrease transmission to lions. The KNP 
buffalo population has grown over the past two 
decades (Cross et al.  2009 ), but lion populations 
respond very slowly to increases in prey availability, 
as social and territorial mechanisms are at least as 
important as prey density in determining lion density 
(Packer et al.  2005 , Ferreira and Funston  2010 ). 
Further, KNP lions preferentially prey upon wilde-
beest and zebra in periods of above- average rainfall 
(Mills et al.  1995 ), as seen in the past two decades 
in Kruger (Cross et al.  2009 ). Of the two known 
maintenance hosts for bTB, buffalo are a major lion 
prey, while the greater kudu are not (Mills et al. 
 1995 ); wildebeest and zebra have not yet been found 
to be infected with bTB. 

 We also acknowledge that estimates of disease preva-
lence in the KNP lions were determined from a non-
random sample: most individuals were “repeat offend-
ers” that had killed cattle or escaped the park. However, 
these lions were equally likely to be male or female 
and were not obviously skewed toward subadults or 
adults (Maas et al.  2012 ), and there is no reason to 
believe that they were more or less likely to eat buf-
falo than other lions. If the prevalence rates in these 
sampled lions were somewhat higher or lower than 
that of the whole population, we would expect any 
bias to be similar across regions of the park. Thus, 
the precise parameter estimates would change, but the 
general pattern and implications would remain. 

 Despite the assumptions in model structure and 
parameterization, simplifi cation of the ecological system, 
and imperfect observational data, we suggest that our 
demographic simulation and disease model reasonably 
refl ect the dynamics of bTB in lions in KNP. Our 
model yields reasonable results that corroborate vet-
erinary fi ndings, that are in accord with similar dynamics 
in humans, and that lead to predictions consistent 
with subsequent system observations.  

  Applicability of ABC to other systems 

 The main strength of the ABC framework is to 
clarify the dynamics of complex stochastic systems in 
which the likelihood cannot be captured by analytic 
expressions. ABC effi ciently explores the full distribu-
tion of posterior parameter probabilities (Hartig et al. 
 2011 ), can determine when measurements are insuf-
fi cient to constrain parameter estimates, and can identify 
the most relevant data for closing these gaps (e.g., 
Jabot  2010 , Csilléry et al.  2012 ). 
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 Two components are needed when using the ABC 
framework to investigate wildlife disease systems: (1) 
empirical data describing one or (preferably) more 
patterns in the target population or community; and 
(2) a stochastic simulation model that describes the 
system, with one or more unknown parameters whose 
precise measurements would yield insight into system 
dynamics. The patterns serve to constrain the param-
eter space, and as such, variation over space and/or 
time in the number of individuals, size or age classes, 
sex ratios, disease prevalence, or mortality rate are 
useful (Wiegand et al.  2003 ). The existence of more 
than one pattern is typically necessary to constrain 
the parameter space enough to fi nd a meaningful 
solution (Grimm et al.  2005 ). However if initial attempts 
indicate that empirical measurements are inadequate 
to constrain the parameter space, cross- validation 
techniques can elucidate the data that should be col-
lected in the future (e.g., Jabot  2010 , Csilléry et al. 
 2012 ). 

 When using the ABC framework, a set of summary 
statistics must be selected. For systems with little 
observational data, such as described here, options 
may be limited, but summary statistics for more com-
prehensively studied systems may need to reduce the 
dimensionality of the associated data. See Hartig et al. 
( 2011 ) for a discussion of minimally suffi cient summary 
statistics. Before proceeding with the ABC algorithm, 
artifi cially created data can be used to test whether 
the summary statistics are suffi cient and effi cient (e.g., 
Jabot and Chave  2009 ). 

 Computational demands must also be considered, 
because stochastic simulation models must be run 
repeatedly over a potentially large parameter space. 
The approximate time required to conduct an ABC 
analysis is the product of the average simulation 
 runtime, the number of particles used in each round, 
and the number of rounds necessary to reach posterior 
convergence. Currently, R packages  abc  and  EasyABC  
make implementing ABC algorithms straightforward 
and provide tools for post- processing (Csilléry et al. 
 2012 , Jabot et al.  2013 ). 

 Alternatives to ABC exist. For the lion and bTB 
system, we could have employed synthetic likelihoods 
that matched model results with observed data (Wood 
 2010 ), and we might have considered optimization 
methods such as simulated annealing or genetic algo-
rithms to search the parameter space for the best 
parameter sets. However, we wanted to infer the breadth 
of the likely parameters as well as the mean and 
median. 

 Emerging infectious diseases are an increasing chal-
lenge for wildlife management (Daszak  2000 ) and for 
international conservation policy. However, wildlife 
disease dynamics are often diffi cult to study due to 
a paucity of data and the expense and logistical dif-
fi culties associated with their collection. Classical ana-
lytic disease models are of limited use in complex 

systems where disease dynamics depend on host social 
structure, behavior, and heterogeneous contact rates. 
Complex simulation and network models often require 
large amounts of empirical data that are not always 
available. The ABC modeling framework can employ 
data on population structure together with observed 
patterns of disease to constrain the set of all possible 
combinations of unmeasured parameters. In the case 
of the KNP lions, we knew little about the disease 
itself, but were able to infer disease patterns based 
on lion demographics and social structure, spatiotem-
poral spread of disease in buffalo, and just one set 
of observations of disease prevalence in lions. The 
ABC framework is a next step in wildlife disease 
modeling, making it possible to estimate essential dis-
ease dynamics in complex systems with limited fi eld 
data in order to inform management decision 
making.   
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