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Abstract

Estimates of age-specific mortality are regularly used in ecology, evolution, and
conservation research. However, estimating mortality of the dispersing sex, in
species where one sex undergoes natal dispersal, is difficult. This is because it is
often unclear whether members of the dispersing sex that disappear from moni-
tored areas have died or dispersed. Here, we develop an extension of a multi-
event model that imputes dispersal state (i.e., died or dispersed) for uncertain
records of the dispersing sex as a latent state and estimates age-specific mortal-
ity and dispersal parameters in a Bayesian hierarchical framework. To check the
performance of our model, we first conduct a simulation study. We then apply
our model to a long-term data set of African lions. Using these data, we further
study how well our model estimates mortality of the dispersing sex by incre-
mentally reducing the level of uncertainty in the records of male lions. We
achieve this by taking advantage of an expert’s indication on the likely fate of
each missing male (i.e., likely died or dispersed). We find that our model pro-
duces accurate mortality estimates for simulated data of varying sample sizes
and proportions of uncertain male records. From the empirical study, we
learned that our model provides similar mortality estimates for different levels
of uncertainty in records. However, a sensitivity of the mortality estimates to
varying uncertainty is, as can be expected, detectable. We conclude that our
model provides a solution to the challenge of estimating mortality of the
dispersing sex in species with data deficiency due to natal dispersal. Given the
utility of sex-specific mortality estimates in biological and conservation
research, and the virtual ubiquity of sex-biased dispersal, our model will be use-
ful to a wide variety of applications.

Introduction

Mortality estimates of both sexes for wild animal popula-
tions are fundamental for testing hypotheses derived from
ecological and evolutionary theory, and for predicting

population size and structure for population management
purposes. However, estimating mortality of at least one of
the sexes is commonly hindered by incomplete data on
dispersing individuals. For example, in many large mam-
mal species, males leave their natal place or social group
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around the age of maturity, while females are philopatric.
If individuals of the dispersing sex, in this case males,
leave the areas monitored by field studies that collect
resighting data on marked individuals, these dispersing
individuals impede the quality of gathered data in the fol-
lowing way.

Dispersing individuals are usually unavailable for col-
lecting age-at-death data because following dispersing
individuals using telemetry or GPS technology is costly
and labor-intensive. Furthermore, for many species
deaths are rarely observed in the field. Instead, deaths
are inferred from permanent disappearances of individu-
als from the study area. However, missing members of
the dispersing sex, which were old enough for dispersal,
may have died or dispersed. This uncertain fate of dis-
appeared members of the dispersing sex makes the esti-
mation of the mortality difficult using existing methods.
The estimation of mortality for the philopatric sex is in
comparison relatively straightforward because missing
members of the philopatric sex are likely dead, even if
their bodies are not found, as these individuals do not
disperse.

Models to infer mortality using capture–mark–recap-
ture/resighting (CMRR) data derived from the Cormack–
Jolly–Seber framework (CJS; after Cormack 1964; Jolly
1965; Seber 1965) can accommodate both uncensored
and right-censored records (i.e., individuals known to be
alive after the last observation). These approaches exploit
the fact that each type of record contributes different
information (White and Burnham 1999). Extensions to
the initial models have been developed that accommo-
date species-specific life histories and data issues arising
from the movement of the individuals in relation to the
spatial and temporal distribution of the marking and
resighting effort. Accordingly, these models, known as
multistate models (Arnason 1973; Schwarz et al. 1993),
incorporate incomplete and heterogeneous resighting
probabilities, multiple states, and multiple locations (e.g.,
Lebreton and Pradel 2002; Mackenzie et al. 2009; Cubay-
nes et al. 2010). Pradel (2005) extended the multistate
framework to account for unobservable states, particu-
larly in the context of movement between sites. This
extension, known as multievent models, incorporates the
estimation of uncertain states into the modeling of sur-
vival while accounting for dispersal rates and site fidelity
(Avril et al. 2012; Lagrange et al. 2014). Alternatively,
Ergon and Gardner (2014) extended the CJS model into
a robust-design spatial capture–recapture (RD-SCR)
model to jointly model survival and dispersal where the
activity centers are treated as a latent state. Similarly,
Schaub and Royle (2014) have recently developed a spa-
tially explicit Cormack–Jolly–Seber approach that jointly
models mortality and dispersal using movement data for

species in which dispersal can be described as a random
walk.
These approaches provide a fundamental framework to

estimate survival under state uncertainty, particularly in
the context of dispersal. Further complications arise when
information on sex or ages is missing. In order to
address issues with missing records in CMRR data, Baye-
sian approaches have been developed that estimate sur-
vival probabilities and transition probabilities between
states and locations while augmenting data (Dupuis 1995,
2002; King and Brooks 2002). Some of these approaches
estimate latent (unknown) states jointly with all other
model parameters in a hierarchical framework using
Markov chain Monte Carlo (MCMC) algorithms (Clark
et al. 2005; Colchero and Clark 2012; Colchero et al.
2012). As latent states can be both finite sets of discrete
states (e.g., locations or stages) or continuous variables
(e.g., date of birth or death), this framework is suitable
for developing a survival model that treats dispersal as a
latent state, and can therefore accommodate uncertain
records due to natal dispersal. This is particularly impor-
tant for data sets where individuals of one or both sexes
disperse but information on their movements is missing.
In such cases, there is no information of the fate of
potential dispersing individuals at the last time they are
detected. At this time, their dispersal state (i.e., either dis-
persed or died) is unknown, and thus, the estimation of
survival can be biased if this latent state is not explicitly
modeled.
Here, we present a Bayesian hierarchical model that

builds upon the multievent framework (Pradel 2005) and
that estimates age-specific mortality and dispersal for spe-
cies where one sex is philopatric and one sex undergoes
natal dispersal. The model fits a parametric age-specific
mortality model as a function of age and sex jointly with
the estimation of the distribution of ages at dispersal,
treating potential dispersal as a latent state. Using simu-
lated data, we first validated the model. We then applied
the model to estimate age-specific mortality of both sexes
for Serengeti lions (Panthera leo) in Tanzania. As this
particular data set contains the expert opinion from the
head of the study (C. Packer, unpublished data) on
whether a missing male is likely to have dispersed or
died, we used this information to gain further insights
into the workings of our method. In particular, using the
expert’s opinion, we varied whether missing males
entered the model as potential or known dispersers, and
compared the mortality estimates among the different
models in order to evaluate the influence of the imputa-
tion of dispersal as a latent state on our mortality esti-
mates. For simplicity, we will refer to the philopatric sex
as being female, and to the dispersing sex as being male.
However, the model is flexible as to which sex is the
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dispersing sex, while it can be extended for the case
where both sexes disperse.

Methods

We focus on species in which individuals disperse out of
the study area only once at around the age of maturity
(“natal dispersal”) and where information on individual
dispersal events is unavailable. In addition, our model is
developed for data sets where movements within the
study area are missing. To isolate the effect of uncertainty
in male records on mortality estimates from other effects,
we focus on data that meet the following assumptions.
We assume that individuals are resighted with certainty if
they are alive and in the study area. For estimating the
age-specific probabilities of dispersal for the dispersing
sex, we further assume that mortality in- and outside the
study area is equal and that individuals born outside the
study area disperse into the study area with equal proba-
bilities as individuals born in the study area disperse out
of it. We also assume that ages of individuals whose birth
was not observed (left-truncated records) can be esti-
mated with sufficient certainty by a trained observer to
allow us to not include time of birth as a latent state in
the model and to model ages at death as a continuous
variable, although this can be included following Colchero
and Clark (2012); Colchero et al. (2012). However, as the
data available to us for the empirical application con-
tained individuals that died before sexing was possible,
we did construct the model to accommodate this type of
record, treating the sex of unsexed individuals as another
latent state. Finally, we further make one assumption that
we know is not met for data from wild animal popula-
tions, and that is that mortality only depends on age and
sex and not on any other covariates. However, this
assumption allows us to develop a model to estimate
baseline mortality for pooled data, which can later on be
easily extended to incorporate other covariates.

Life history data

Data structure

The life history data used to estimate age- and sex-specific
mortality included records for native-borns and immi-
grants. Native-borns were born in the study population,
defined as all individually recognizable and constantly
monitored individuals. Immigrants entered the study
population some time after their birth due to migration
(Fig. 1). Similarly, individuals that were located in the
study area at the time the study began had a first detec-
tion age xFi [ 0. The recorded types of departure from
the population included death, censoring due to being

alive at the end of the study, or uncertain fate (death or
censoring through dispersal). Uncertain fates through dis-
persal were only caused by dispersals from the study pop-
ulation to an external population, and not by dispersals
within the study population. Here, we refer to this out-
migration from the study population when we use the
term “dispersal.”

Serengeti population

The study population occupied a 2000 km2 region of Ser-
engeti National Park, Tanzania, that lies at the heart of
the Serengeti–Mara ecosystem. The study site is character-
ized by seasonal rainfall and a southeast to northwest gra-
dient in vegetation from short to tall grassland to open
woodlands (Packer 2005; Mosser et al. 2009). We ana-
lyzed demographic data collected between 1966 and 2013.
Observations were opportunistic between 1966 and 1984,
and most animals were sighted 1–3 times per month.
Study prides have been monitored with radio telemetry
since 1984, allowing each animal to be observed 2–6 times
per month. All individuals are identified from natural
markings (Packer et al. 1991), and birth dates of cubs
born in the study area are deduced from lactation stains
on the mothers. A large number of nomadic males enter
the area, and a small proportion become resident in one
or more of the resident prides. Our analyses exclude all
nomadic males that never became residents in the study

Native-borns

Immigrants

Non-migrating males and females

Potentially dispersing males

Uncensored

Censored

Uncensored

Natal dispersal

Unknown fate

Uncensored

Censored

Figure 1. Example of types of records in the lion data set. Circles

represent times of entry (tFi ), where the entry type for filled circles

corresponds to known times of birth and open circles are entries after

birth (i.e., immigration or birth before the study started). Squares are

departure times (tLi ) where filled squares are known times of death

and open squares are dispersal. Filled triangles indicate individuals

known to be alive at the end of the study and vertical bars indicate

that the type of departure from the study population is uncertain (i.e.,

either death or dispersal).
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area (N = 548, ! 25% of all observations on males).
These left-truncated and right-censored records contain
little survival information. As a consequence, a model that
included these records did not converge. Individuals with
unknown dates of birth were assigned an estimated age
by a trained observer, using age indicators (e.g., relative
body size, nose coloration, and eruption and wear of
teeth) (Smuts et al. 1978; Whitman et al. 2004). The data
set contained a large number of individuals of unknown
sex. As the vast majority of these unsexed individuals died
within the first weeks after birth, we excluded all individ-
uals with last detection ages younger than 0.25 years of
age. The final data set contained observations on 1341
females, 1263 native-born males, 316 immigrants, and
269 unsexed native-born individuals. The proportion of
females among all native-born individuals (excluding
immigrants), assuming a sex ratio of 1 to 1 among indi-
viduals that died before their sex could be determined,
was 0.51.

Mortality analysis

Model variables and functions

We developed a model that estimates both age-specific
mortality and dispersal where the dispersing state is
unknown. Thus, at the time of last detection the dispers-
ing state, di, for an individual i that belongs to the dis-
persing sex is treated as a latent state that needs to be
estimated. Accordingly, the model requires defining ran-
dom variables and probability functions for the age at
death, X, and for the age at natal dispersal, Y, as well as
for the binary latent state, D, with support given by
di ¼ 1 if an individual is imputed to have dispersed and
di ¼ 0 otherwise. Furthermore, we have extended the
model to account for unknown sex, S (see Table 1 for a
summary of all random variables, parameters, and indica-
tors).

The age-specific mortality model requires defining the
mortality function or hazard rate as

lðxjhÞ ¼ lim
Dx!0

Prðx%X\x þ Dx j x%X; hÞ
Dx

; x' 0 (1)

where h is a vector of mortality parameters to be esti-
mated. The estimated mortality can be used to calculate
the probability of survival from birth to age x, or survival
function,

SðxjhÞ ¼ PrðX' xÞ ¼ exp (
Z x

0
lðzjhÞdz

! "
; (2a)

the probability that death occurs before age x, or the
cumulative density function (CDF),

FðxjhÞ ¼ PrðX\xÞ ¼ 1( SðxjhÞ; (2b)

and the probability density function (PDF) for age at
death

f ðxjhÞ ¼ d

dx
FðxjhÞ ¼ SðxjhÞlðxjhÞ: (2c)

To capture the bathtub-shaped mortality rates typical
of large mammals, we used the Siler model (Siler 1979)
in the form

lðxjhÞ ¼ ea0(a1x þ c þ eb0þb1x; (3)

where h> ¼ ½a0; a1; c; b0; b1*, with a0; b0 2 R and
a1; c; b1 [ 0. The Siler model is a competing risk model
constituted by three additive mortality hazards. The
parameters capture different aspects of the shape of the
age trajectory with the exponential of a0 being the initial
level of mortality rates and a1 governing the exponential
decrease in mortality over infant and juvenile ages. The c
parameter scales mortality rates up or down and is usu-
ally interpreted as reflecting age-independent causes of

Table 1. Description of random variables, observed variables, and

indicators

Modeled random variables

X Random variable for age at death, where x

is any age element

Y Random variable for age at natal dispersal

with elements y

D Binary random variable for disperser or nondisperser

S Binary random variable for sex

Observed variables and indicators

tF Vector of times of first detection

tL Vector of times of last detection

b Vector of times of birth

xF Vector of ages at first detection (xFi ¼ tFi ( bi )

xL Vector of ages at last detection (xLi ¼ tLi ( bi )

m Indicator vector for immigrants (mi ¼ 1 if immigrant)

Updated indicators

d Indicator vector for dispersers (di ¼ 1 if disperser

and di ¼ 0 otherwise)

s Indicator vector for sex (si ¼ 1 if female and

si ¼ 0 otherwise)

Parameters

h Vector of mortality parameters

c Vector of natal dispersal parameters

Functions

Mortality

l(x|h) Mortality (Siler model)

S(x|h) Survival

F(x|h) CDF for age at death (F(x) = 1(S(x))

f(x|h) PDF for age at death

Dispersal

g(y|c) PDF for age at natal dispersal (gamma distribution)

G(y|c) CDF for age at natal dispersal
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mortality. This parameter is also dominant in capturing
mortality in early adult ages when infant mortality has
declined and senescence mortality not yet risen. The
exponential of the b0 parameter represents the initial
mortality of the age-dependent increase of mortality and
b1 determines the rate of this increase (Siler 1979).

To model the ages at dispersal, we defined the random
variable Y for age at dispersal, where the age at natal dis-
persal was Y !GYðyÞ for ages y > 0, with GY ðyÞ being the
Gamma distribution function with parameter vector
c> ¼ ½c1; c2&. This distribution yields the probability den-
sity function (PDF) of age at natal dispersal given by

gYðyjcÞ ¼
cc21

Cðc2Þ
ðy ' aÞc2'1e'c1 ðy'aÞ if y( a;

!
(4)

where a is the minimum age at natal dispersal and
c1; c2 [ 0.

At the age of last detection, xL, individuals belonging
to the dispersing sex can have dispersed, with a probabil-
ity conditioned on X and Y given by

PrfD ¼ 1jxLg ¼ PrfX[ xL ^ Y ¼ xLg: (5a)

It is the joint probability that these individuals have not
died and have dispersed shortly after the last detection
age. The probability that these individuals have died and
have not dispersed, but would have dispersed at later
ages, is accordingly

PrfD ¼ 0jxLg ¼ PrfX ¼ xL ^ Y [ xLg: (5b)

As we specify above, the dispersal state is treated as a
latent state and is therefore imputed. Below we explain
how the likelihoods are specified and how the latent states
are imputed. A summary of all the functions, parameters,
indicators, and variables is provided in Table 1. R code to
simulate data and fit the model can be downloaded from
the link provided in the Supporting Information.

Likelihood and posterior

To construct the mortality likelihood, we assigned a dif-
ferent probability to each type of record in Figure 1. The
likelihood for the nondispersing individuals (i.e., mem-
bers of the nondispersing sex or members of the dispers-
ing sex that disappeared at ages younger than the
minimum age at dispersal a) is given by

pðxF ; xL j hÞ ¼ PrðX ¼ xL j X[ xF; hÞ if uncensored
PrðX[ xL j X[ xF ; hÞ if censored,

!

(6a)

where xL corresponds to the age at last detection and xF is
the age at first detection (i.e., xF ¼ 0 for individuals born
in the study area and xF [ 0 for immigrants or indivi-
duals that were located in the study area when the study

began). As we mentioned above, we defined dispersal state
for all members of the dispersing sex with last seen ages
older than the minimum age at dispersal a as a random
variable D. It took the value di ¼ 1 if an individual i, born
at bi and last detected at tLi , dispersed in its last detection
age, xLi ¼ tLi ' bi, and 0 if otherwise. For some individu-
als, di is known either because the individuals were known
to be alive and in the study area at the end of the study
(i.e., right-censored observations), or because their disap-
pearance was known to be a death or a dispersal. For all
other individuals, di was imputed as a latent state.
Based on equations (5), the joint mortality and disper-

sal likelihood for members of the dispersing sex with
xLi [ a is given by

pðxF ; xL j di;h; cÞ

¼

PrðX ¼ xL;Y[ xL j X[ xF;h; cÞ if uncens. & di ¼ 0
PrðX[ xL;Y[ xL j X[ xF; h; cÞ if cens. & di ¼ 0
PrðX[ xL;Y ¼ xL j X[ xF;h; cÞ if di ¼ 1
PrðxF\X ¼ xL;Y ¼ xF j h; cÞ if mi ¼ 1;

8
>>>><

>>>>:

(6b)

where mi is an indicator for individuals that joined the
study population as immigrants, and thus, these indivi-
duals contribute important information on ages at death
and dispersal.
Furthermore, we also defined a binary variable S for

the sex of the individual. With this, we could construct
the full Bayesian model as

pðdu; su; h; c j dk; sk; xF; xLÞ / pðdk; sk; xF; xL j du; su; h; cÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
likelihood

) pðdÞ pðsÞ|fflfflfflfflffl{zfflfflfflfflffl}
priors for states

) pðhjhpÞ pðcjcpÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
priors for parameters

(7)

where d was the vector of dispersal states and s was the
indicator vector for sex (si ¼ 1 if female and si ¼ 0 if
male), and hp and cp are vectors of prior hyperparameters
for the mortality and dispersal parameters. Each of these
vectors had two subsets represented by the subscripts u
for unknown and k for known.

MCMC and conditional posteriors

We used a Markov chain Monte Carlo (MCMC) algo-
rithm to fit the model in equation (7). For all implemen-
tations, we ran four parallel MCMC sequences with
different randomly drawn starting values and set the
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number of iterations to 15,000 steps with a burn-in of
5000 initial steps and a thinning factor of 20. We used a
hierarchical framework that only needed the conditionals
for posterior simulation by Metropolis sampling (Metro-
polis et al. 1953; Gelfand and Smith 1990; Clark 2007).
This means that for this particular case, the algorithm
divided the posterior for the joint distribution of
unknowns into four sections: (a) estimation of mortality
parameters, (b) estimation of dispersal parameters, (c)
estimation of unknown dispersal state, and (d) estimation
of unknown sexes. Here, we present each section, specify-

ing the conditional posterior and the acceptance probabil-
ity for the Metropolis Sampler algorithm.

Section a: Posterior for mortality parameters

The conditional posterior to estimate the mortality
parameters h required only the ages at first and last detec-
tion xFi and xLi and the dispersal states di. The posterior
for a given individual i was

pðh j xLi ; x
F
i ; diÞ /

f ðxLi j hÞ
SðxFi j hÞ pðhjhpÞ if di ¼ 0

SðxLi j hÞ
SðxFi j hÞ

pðhjhpÞ if di ¼ 1 or
censored

8
>>><

>>>:

(8)

where hp was a vector of prior hyperparameters. If the
individual was a native-born, then xFi ¼ 0 and the
denominator in both expressions was equal to 1. At every
iteration and for a given parameter h 2 h with condi-
tional posterior p(h|⋯), the algorithm proposes a new
parameter value for each element of h0 and accepts it with
acceptance probability

pðh; h0Þ ¼ min 1;

Qn

i¼1
pðh0 j xLi ; xFi ; diÞ

Qn

i¼1
pðh j xLi ; xFi ; diÞ

8
>><

>>:

9
>>=

>>;
: (9)

Section b: Posterior for dispersal parameters

The conditional posterior to estimate the parameters c for
the distribution of ages at natal dispersal for a given indi-
vidual i was

where cp was a vector of prior hyperparameters for c, xi

was an indicator that assigns 1 if an individual was a
potential disperser (i.e., if it belonged to the dispersing
sex and disappeared at an age older than the minimum
age at dispersal a), and mi was an indicator for immi-
grants. We set the minimum age at dispersal to a = 1.75
years for the simulated data and a = 1.5 for the Serengeti
data. The age a corresponded to the earliest age at which
immigrants could be detected and potential dispersers
could be last seen. For a parameter c 2 c with condi-
tional posterior density p(c|⋯), the acceptance probability
for a proposed parameter of c0 was

pðc; c0Þ ¼ min 1;

Qn

i¼1
pðc0 j $ $ $Þ

Qn

i¼1
pðc j $ $ $Þ

8
>><

>>:

9
>>=

>>;
: (11)

Section c: Posterior for dispersal states

Dispersal state was evaluated for individuals that were
potential dispersers (i.e., xi ¼ 1). The joint probabilities
for dispersal state were

pðdi j xLi ;xi;miÞ /

f ðxLi Þð1% GðxLi ÞÞ pðdijhp; cpÞ if xi ¼ 1;mi ¼ 0; di ¼ 0

SðxLi ÞgðxLi Þ pðdijhp; cpÞ if xi ¼ 1;mi ¼ 0; di ¼ 1

0 otherwise:

8
>>>>>><

>>>>>>:

(12)

pðc j xFi ; x
L
i ; di;xi;miÞ /

gðxLi % a j cÞ pðc j cpÞ if xi ¼ 1; mi ¼ 0 & di ¼ 1

½1% GðxLi % a j cÞ' pðc j cpÞ if xi ¼ 1; mi ¼ 0 & di ¼ 0
gðxFi % a j cÞ
SðxFi j hÞ pðc j cpÞ if mi ¼ 1

0 otherwise;

8
>>>><

>>>>:

(10)
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The first terms on the right-hand side of equation (12)
correspond to the likelihood function as defined in equa-
tions (6), while the second terms are the priors for dis-
persal state. For this section, the acceptance probability
for the sampling given the last detection ages, the disper-
sal states, the potential disperser states, and the immigra-
tion states was

pðdi; d0iÞ ¼ min 1;

Qn

i¼1
pðd0i j xLi ;xi;miÞ

Qn

i¼1
pðdi j xLi ;xi;miÞ

8
>><

>>:

9
>>=

>>;
: (13)

Section d: Posterior for unknown sexes

Some individuals disappeared before the minimum age at
dispersal without their sex being determined. The condi-
tional posterior for the latent state of sex was

pðsi j xLi ; hÞ / pðxLi ; h j siÞ pðsiÞ; (14)

where the second term on the right-hand side is a prior
for sex based on the sex ratio at birth, or if the analysis
was conditioned on survival to age x, based on the sex
ratio at age x.

The indicator for potential dispersers xi (see Section c)
was updated in each iteration. Individuals of undeter-
mined sex and last detection ages older than the mini-
mum age at dispersal were assigned 1 if imputed to be
male and 0 if imputed to be female. The acceptance prob-
ability given the last detection ages and the mortality
parameters was

pðsi; s0iÞ ¼ min 1;

Qn

i¼1
pðs0i j xLi ; hÞ

Qn

i¼1
pðsi j xLi ; hÞ

8
>><

>>:

9
>>=

>>;
: (15)

Mortality and dispersal priors

We set the Siler parameters for the prior for both sexes
to a0p ¼ $3 (r = 0.5), a1p ¼ 0:2 (r = 0.25), cp ¼ 0
(r = 0.25), b0p ¼ $4 (r = 0.5), and b1p ¼ 0:01
(r = 0.25). For dispersal, the Gamma parameters (shape
and scale) for the prior were set to cp ¼ 8; 2f g with
rðcpÞ ¼ 2; 1f g. Priors were normally distributed and
truncated at 0, apart from the level parameters of the
Siler model (a0 and b0), which were not truncated.
Both the mortality and dispersal priors were fairly
uninformative. The priors for the probability of being
female was 0.5 for the simulated data and 0.51 for to
the Serengeti data (see also subsection “Serengeti
population”).

Model application and posterior analysis

We fitted the model to the Serengeti data with sex as a
covariate, which was imputed for individuals with
unknown sex. We included the covariate by making the
mortality parameters contained in h functions of the
covariate, namely

hi ¼ hi1 si þ hi2ð1$ siÞ; (16)

where si ¼ 1 if female and 0 otherwise.
In order to gain deeper insights into the performance of

our model, we further exploited a unique source of informa-
tion that is contained in this data set. A Serengeti lion expert
used the circumstances accompanying the disappearances of
males to deduce whether the individuals may have dispersed
(C. Packer, unpublished data). For example, as young males
often leave their natal prides with brothers, a simultaneous
disappearance of brothers hints that this is likely to be a dis-
persal event. We fitted the model with three different set-
tings. First, all males with uncertain fates and last detection
ages older than minimum age at dispersal were assigned the
state of “potential dispersers” and entered in the model as
described in “Section c” above (Model A). Second, all males
that were indicated by the expert to potentially have dis-
persed were entered as “known dispersers” (see equation 6b)
(Model B). And third, all males that were indicated by the
expert to potentially have dispersed were entered as “poten-
tial dispersers” while other uncertain male records were
treated as having died at the last detection age (Model C).
To avoid problems arising from the large number of

unsexed individuals that died within the first weeks after
birth, we fitted the model from the start age of 0.25 years.
We predicted mortality rates for each sex using the parame-
ter estimates of every step of the MCMC after burn-in and
thinning and used these predictions to calculate mean and
credible intervals of mortality rates. To compare the three
models to each other, we computed the life expectancy at
the model start age and the Kullback–Leibler (KL) diver-
gences of the mortality parameter posterior densities (Kull-
back and Leibler 1951; McCulloch 1989; Burnham and
Anderson 2001) (see Methods S1 for details on the calcula-
tion and the interpretation of KL values).

Simulated data

To validate the performance of our model, we used
known mortality parameters to simulate data of the
described structure and checked whether our model accu-
rately retrieved these parameters. To simulate the data,
we first randomly assigned a sex for an initial number of
individuals by drawing from a binomial distribution,
assuming an equal probability of being born male or
female. We then randomly drew ages at death (xi) for
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each individual i by inverse sampling from a Siler CDF
(see equations 2b and 3) with parameters
hf ¼ f"1:4; 0:65; 0:07;"3:8; 0:2g for females and
hm ¼ f"1:2; 0:7; 0:16;"3:5; 0:23g for males. The sub-
scripts f and m denote females and males, respectively.
We then randomly drew ages at dispersal for all males by
inverse sampling from a gamma CDF with parameters
c = {10,3} and adding the minimum age of dispersal
a = 1.75. We assigned every individual a last detection
age xLi depending on its sex and dispersal status. For
females and for those males whose ages at death were
simulated to be younger than their ages at dispersal (i.e.,
they died before they could disperse), the last detection
ages were the ages at death. For the other males, who
were simulated to have died after dispersal, the last detec-
tion ages were set to be the ages at dispersal. Finally, to
add immigrants to the data, we simulated the same num-
ber of males being born in the external population. For
these males, as before, we randomly drew ages at deaths
and ages at dispersal, and if they were simulated to have
dispersed before death, we added them to the data as
immigrants with their ages at death recorded as last
detection ages and their ages at dispersal recorded as first
detection ages xFi .

We simulated data sets of two different initial numbers
of native-borns (small sample size N = 500 and large
sample size N = 2000). Within each sample size, we also
produced further data sets where the sexes of all individu-
als were known, and data sets where we randomly
assigned, with a probability of 0.3, the state of “unknown
sex” to all individuals that died at <1 year of age. Finally,
we simulated data that varied in the proportion of
observed or “known” deaths among individuals that were
no longer resighted. We used three settings: 1, 5, and
10% known deaths. In total, we thus simulated 12 data
sets. All simulations and analyses were conducted using
the statistical computing language R (R Core Team 2012).

Results

Simulation study

We used a simulation study to validate our model. For all
12 simulations, the mortality rates used to simulate the
data lay within the 95% credible intervals of the estimated
mortality for both sexes (Fig. 2). Of all the introduced
variations in data quality (sample size, unsexed individu-
als, proportion “known” deaths), the only one with a
marked effect on the performance of the model was vary-
ing the sample size. As could be expected, smaller sample
sizes resulted in wider credible intervals particularly for
males and for older ages of females. Due to the wider
confidence bands for smaller sample sizes, the respective

estimated mortality rates could appear to be less variable
over the life span than the mortality rates used to simu-
late the data. This manifested as a less pronounced U-
shape of the estimated mortality rates when compared to
the “real” mortality rates (e.g., second panel in second
row of Fig. 2). The proportion of unsexed individuals
dying at <1 year of age, and the proportion of known
deaths among disappearances did not discernibly affect
the retrieval of the mortality parameters.

Application

The empirical models for Serengeti lions converged for
all estimated parameters (Fig. 3; see also Figs. S1–S3 for
traces). To supplement the visual inspection of the
chains, we further confirmed convergence for the c
parameters using the potential scale reduction (Gelman
et al. 2013). We obtained values very close to 1 (between
0.999 and 1.002) for five of the six estimated c parame-
ters (Model A, B, C and both sexes). Only one c param-
eter for females had a value of 1.05, which is still within
the limits of having reached convergence. Overall mor-
tality of both sexes was U-shaped with high initial cub
mortality, low mortality of prime-aged adults, and an
age-dependent increase in mortality at older ages
(Fig. 4). Mortality of males was higher than mortality of
females across all ages (Fig. 4), except for very young
ages, up until 1 year, during which confidence bands of
male and female mortality overlapped. However, this
may be due to the large proportion of unsexed individu-
als at these ages (see data description) and the imputa-
tion of sex as a latent state for these individuals, which
introduced uncertainty. Due to the higher male mortality
rates across most ages, female life expectancy (4.7 years
at model start age) exceeded that of males by approxi-
mately 2 years.
Now we turn to the comparison between the models

with varying settings for potential dispersers. Model A
(Fig. 4A) treated the data as if no further information
was available on dispersal status of males with uncertain
fates (i.e., the default setting of the model). Model B took
advantage of expert knowledge on lion behavior and trea-
ted all males that a lion expert believed were dispersers,
as known dispersers (Fig. 4B). Finally, Model C treated
all expert-indicated potential dispersers as potential dis-
persers and thus considered all other uncertain male
records to represent deaths (Fig. 4C). The number of
potential dispersers whose dispersal state was imputed as
a latent state was therefore smaller in Model C when
compared to Model A.
We compare these models by examining the estimated

mortality rates (Fig. 4), the posterior density distributions
(Fig. 3), and the KL divergences (Fig. 5). As females were
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treated the same way in all three models, the posterior
distributions of parameters for females were congruent
among the three models (Fig. 3). Consequently, the KL
divergences were close to, or equal to, 0.5 (Fig. 5), and
female mortality rates were almost identical across all
three models (Fig. 4).

For males, the three models gave slightly varying
results. The different settings regarding potential dis-
persers mostly affected the estimation of the Siler parame-
ters that describe initial mortality (a0), the age-dependent
decrease in mortality at young ages (a1), and the age-
independent mortality (c) (Fig. 5). The initial mortality
was higher in Model B, and lower in Model C, when
compared to the default model A (Fig. 3, Table S1). The
age-dependent decrease in mortality was steeper in Model
B compared to Model A but similar between Model A
and C. The age-independent mortality was higher in both
Model B and C when compared to the default Model A.

The differences among the three models can be more
fully understood by comparing the male mortality rates
predicted from the three models (Fig. 4). Due to the
steep decline in age-dependent mortality at younger
ages when all expert-indicated dispersers were treated as
dispersers (Model B), mortality rates during the juvenile
ages up to approximately three years of age were lower
in Model B when compared to both models that
imputed dispersal state for potential dispersers (Model
A and C). However, for the prime-adult ages, Model B
gave the highest mortality estimates, followed by Model
C, and then Model A, which gave the lowest estimates.
Mortality rates at older ages were highest in Model A
and B. Despite these differences in the shape of the
mortality rates curves, the life expectancies at 0.25 years
of age were predicted to be identical by Model A and
B (2.7 years), and only slightly different by Model C
(2.4 years).
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Discussion

Life history data of wild animals are often incomplete
because animals, even though alive and well, may tem-
porarily or permanently be absent when researchers try to
observe them at a given location. This has far reaching
consequences for the estimation of biological properties
from these data. Accordingly, various statistical
approaches have been developed that account for tempo-
ral and spatial heterogeneity in recapture probabilities.
For example, multistate CMRR methods have been
applied to estimate survival rates while accounting for
migration between locations within study sites (Arnason
1973; Schwarz et al. 1993; Lebreton and Pradel 2002; Pra-
del 2005; Mackenzie et al. 2009; Lagrange et al. 2014).
And spatially explicit CMRR methods have been devel-
oped to estimate survival probabilities and population size
(Borchers and Efford 2008; Efford and Mowat 2014;
Ergon and Gardner 2014). Furthermore, a recently devel-
oped spatially explicit Cormack–Jolly–Seber approach
jointly models dispersal and survival hierarchically for
species in which dispersal movements can be assumed to
follow a random walk (Schaub and Royle 2014).

However, these models require some information on
movement within the study area to estimate mortality
parameters and latent states. Our model is an alternative
to these models for data sets where no information on
movement within the study is available and thus dispersal

state is entirely unknown. Instead, potentially dispersing
individuals are resighted with certainty as long as they are
alive and in the study area, and they are not resighted
after they dispersed. To meet these challenges, our model
does not model spatially heterogeneous detection proba-
bilities and dispersal distances but rather imputes the dis-
persal state of the uncertain male records (i.e., died or
dispersed) as a latent state variable in a Bayesian hierar-
chical framework (Clark et al. 2005; Colchero and Clark
2012; Colchero et al. 2012). We therefore show that for
species with sex-specific natal dispersal, mortality and dis-
persal can be jointly modeled without using movement
data. Of course, movement data could potentially be used
to inform the dispersal process. However, we decided to
develop a model that does not rely on spatial data so that
the model can easily be applied to data sets that differ in
the structure of available spatial data.
To gauge the possibility of estimating sex- and age-spe-

cific mortality in species with sex-biased natal dispersal,
we focused on data with incomplete records for sex and
age at death. We assumed that this uncertainty could
arise from one of two mechanisms. Firstly, native-born
males that disperse from the study area can cause uncer-
tainty in male records of age at death, and secondly, indi-
viduals dying as juveniles before their sex could be
determined resulted in uncertain sex records. Implicitly,
the model therefore assumes that all birth dates are
known and that all other types of records can be treated
as complete records. Consequently, the model treated the
last detection ages of potential dispersers that were
imputed to be nondispersers and of immigrants as certain
ages at death. The accuracy of the model therefore hinges
on the assumption that potential dispersers disperse only
once during their life. During our study, it became appar-
ent that while this assumption holds for some lion popu-
lations (A. Loveridge, unpublished data), it does not hold
for the Serengeti population.
Relaxing the assumption and accounting for higher-

order dispersal necessitates a customized extension of the
mortality model we present here. The effectiveness of fit-
ting this more complex model depends on the availability
of information on both known deaths and dispersal
events among immigrants. In the case of the Serengeti
population, we took advantage of the expert’s indication
on likely dispersal state of disappearing immigrants and
extended the default model (Model A) to treat all immi-
grants that were indicated to be likely dispersers as cen-
sored at last seen ages. The difference between the male
mortality estimates from the default model and the
extended model provides an indication of the amount by
which male mortality is overestimated if secondary dis-
persal is not accounted for (Fig. 6). To improve mortality
estimates, in future extensions of the model secondary
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dispersal can be imputed as a further latent state, simi-
larly to what we have showcased here for natal dispersal.

Another consequence of the treatment of immigrants’
last detection ages as ages at death is that the ratio of
immigrants to dispersers is likely to influence the estima-
tion of male mortality parameters. Problems may arise if
the number of individuals that disperse out of the study
area is much higher than the number of individuals that
immigrate into it (see Fig. S4 for a simulation). This may
be the case for field sites that are established in protected
areas and act as a source population for surrounding
habitats of lower quality. Mortality in these habitats, and
mortality during the dispersal process itself, may also be
higher than mortality within the study area. Our model
cannot account for this heterogeneity because the data
only contain information collected within the study area.

Finally, the comparison of the different models for the
lion data allows us to draw some conclusions about the
sensitivity of mortality estimates to varying levels of
uncertainty in male records. If all expert-indicated dis-
persers were in fact dispersers (Model B), then by com-
paring the mortality rates estimated by this model to the
one with the default treatment of uncertain records
(Model A), we learn that the default model may have the
tendency to overestimate mortality during juvenile ages
(lower a1 in Model A than B). The default model may
furthermore slightly underestimate mortality during
prime-adult ages. As the model that treats all expert-indi-
cated dispersers as potential dispersers and treats all other
uncertain records as deaths (Model C) shares properties
of both Models A and B (similar c to Model B, similar a0
and a1 to Model A), and may come closest to reality, it

seems like a promising avenue for future development to
directly include expert knowledge in the Bayesian frame-
work via priors. However, this information is an idiosyn-
crasy of the data set that we used here. Making the model
dependent on this information would therefore preclude
the application of the model to estimate mortality for
other populations and species.
In conclusion, we have discussed here how the model

hinges on various assumptions. If these are met, then the
model performs well at estimating mortality of the dis-
persing sex, as we have shown in the simulation study.
The assumptions appear to restrict the utility of the
model because many ecological data sets may not comply
with them. However, we have explained how the different
assumption can be relaxed by extending the basic, here-
presented model. The hierarchical framework and the
modeling of the joint probabilities of ages at death and
dispersal for potential dispersers provide flexibility that
can be exploited to adapt the model to the specific data
structure of each data set. Extensions can include other
covariates, information on interval censoring, and imper-
fect detection probabilities. For example, an extension to
account for secondary dispersal, dispersal of both sexes,
and unknown times of birth is currently developed for a
comparative study of six primate populations (F. Col-
chero, unpublished data). Overall, we conclude that our
model provides a good solution to the challenge of esti-
mating mortality of the dispersing sex in species with data
deficiency for the dispersing sex due to natal dispersal.
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Supporting Information

Additional Supporting Information may be found online
in the supporting information tab for this article:

Figure S1–S3. Traces of mortality and dispersal parameter
estimation for Models A to C.
Figure S4. Predicted mortality functions for males (blue
polygons) and females (pink polygons) compared to the
mortality functions used to simulate the data (solid lines),
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if the probability of immigration into the study area of
males born outside of it was lowered from 1 to 0.5.
Table S1. Estimated coefficients for Models A to C.
Code S1. R code to simulate data, to run the model on
simulated data, and to plot the output can be

downloaded from github.com/bartholdja/mortality-esti-
mation-method.
Methods S1. Calculation and calibration of Kullback
–Leibler divergence.
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