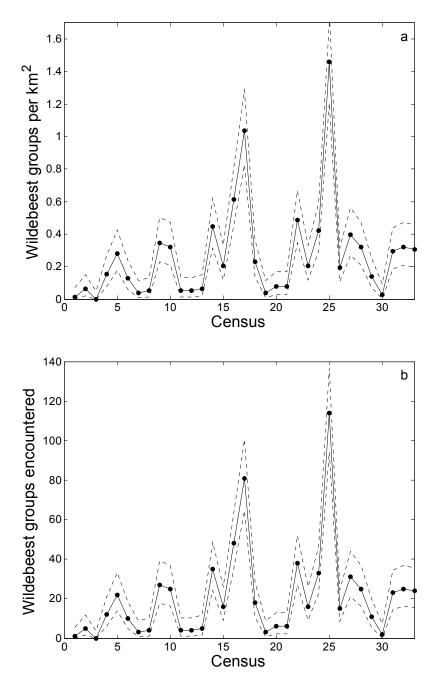
doi: 10.1038/nature06177 nature

SUPPLEMENTARY INFORMATION


Supplementary Information

Supplementary Table 1 – Prey group density in relation to population density, based on a power relationship $y = c \cdot N^b$, where y = prey groups per km² and N = prey individuals per km². Values of t refer to the statistical test that the exponent of relationship b = 1, with critical value of $t_{0.001(2),30} = 3.646$.

Species	prey	Prey	t (b = 1)	P	\mathbb{R}^2	df
	group	group				
	parameter	parameter				
	c	В				
wildebeest	0.0427	0.5453	13.91	< 0.001	0.900	1,31
zebra	0.0714	0.6999	11.07	<0.001	0.956	1,31
Thomson's	0.0814	0.7363	14.89	< 0.001	0.982	1,31
gazelle						
Grant's	0.1012	0.7616	5.92	< 0.001	0.920	1,31
gazelle						
topi	0.1671	0.7298	5.61	<0.001	0.881	1,31
kongoni	0.1327	0.7543	11.32	<0.001	0.975	1,31
warthog	0.3005	0.8887	4.52	<0.001	0.977	1,31
Cape	0.1081	0.6015	6.57	< 0.001	0.760	1,31
buffalo						

www.nature.com/nature 1

Supplementary Figure 1

Variation over time (2004-2007) in (a) wildebeest group density per km² and (b) the number of wildebeest groups encountered across the Serengeti lion study site. 95% confidence limits are shown by dotted lines in each case, assuming a binomial sample error distribution.

www.nature.com/nature 2

Supplementary equations - Equilibria and community matrix coefficients for the lion-wildebeest model.

$$N_{eq} = e^{\frac{ln\left[d\cdot\frac{G}{a\cdot c\cdot\left(\varepsilon-d\cdot G\cdot h_{I}-d\cdot h_{2}\right)}\right]}{b}}$$

$$P_{eq} = \frac{r_{max} \cdot N_{eq} \cdot \left[1 - \left(\frac{N_{eq}}{K}\right)^{\theta}\right] \cdot \left[G + a \cdot c \cdot N_{eq}^{b} \cdot \left(G \cdot h_{1} + h_{2}\right)\right]}{a \cdot c \cdot N_{eq}^{b}}$$

$$\alpha_{II} = r_{max} \cdot \left[1 - \left(\frac{N}{K} \right)^{\theta} \cdot (\theta + I) \right] + \frac{-a \cdot c \cdot b \cdot N^{b} \cdot P}{N \cdot \left[G + a \cdot c \cdot N^{b} \cdot \left(G \cdot h_{I} + h_{2} \right) \right]} + \frac{a^{2} \cdot c^{2} \cdot b \cdot P \cdot \left(N^{b} \right)^{2} \cdot \left(G \cdot h_{I} + h_{2} \right)}{\left[G + a \cdot c \cdot N^{b} \cdot \left(G \cdot h_{I} + h_{2} \right) \right]^{2} \cdot N}$$

$$\alpha_{12} = (-a \cdot c) \cdot \frac{N^b}{G + a \cdot c \cdot N^b \cdot \left(G \cdot h_1 + h_2\right)}$$

$$\alpha_{21} = \left[\frac{b \cdot \varepsilon \cdot a \cdot c \cdot N^b}{N \cdot \left[G + a \cdot c \cdot N^b \cdot \left(G \cdot h_1 + h_2 \right) \right]} - \frac{\left(N^b \right)^2 \cdot \varepsilon \cdot a^2 \cdot c^2 \cdot b \cdot \left(G \cdot h_1 + h_2 \right)}{\left[G + a \cdot c \cdot N^b \cdot \left(G \cdot h_1 + h_2 \right) \right]^2 \cdot N} \right] \cdot P$$

$$\alpha_{22} = \varepsilon \cdot a \cdot c \cdot \frac{N^b}{G + a \cdot c \cdot N^b \cdot (G \cdot h_1 + h_2)} - d$$

www.nature.com/nature 3