
Herbivores, resources and risks: alternating regulation along primary 

environmental gradients in savannas. 
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Herbivores are regulated by predation under certain environmental conditions, whereas in 

others they are limited by forage abundance and nutritional quality. Whether top-down or 

bottom-up regulation prevails depends both on abiotic constraints on forage availability 

and body size, because size simultaneously affects herbivores’ risk of predation and their 

nutritional demands.  Consequently, ecosystems composed of similar species can have 

different dynamics if they differ in resource supply. We use large herbivore assemblages 

in African savanna ecosystems to develop a framework that connects environmental 

gradients and disturbance patterns with body size and trophic structure.  This framework 

provides a model for understanding the functioning and diversity of ecosystems in 

general, and unifies how top-down and bottom-up mechanisms are dependent on 

common underlying environmental gradients. 

 

Herbivore regulation and the implications of body size 

The global decline of large herbivores, due to human-induced landland use changes, 

raises concerns for the long-term conservation of species whose ranges are being reduced 

to a handful of protected areas [1].  The local extirpation of large herbivores has 

consequences for entire ecosystems, because of their role in maintaining the diversity of 

predators and primary producers [2]. Understanding herbivore regulation across resource 

gradients, such as rainfall, is important for the long-term management and conservation 

of ecosystems, especially if shifts in global climate result in a mismatch between the 

location of protected areas and a species’ preferred niche. Here, we investigate how 
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resource gradients simultaneously influence top-down and bottom-up processes in 

ecosystems, using the large herbivore community of African savannas as a generalized 

example. The model could also prove useful in understanding the relation between 

disturbance, resource gradients and trophic structure in other ecosystems. 

 

Classic food chains represent relationships between trophic levels as linear bottom-up or 

top-down processes: abiotic factors such as rain determine primary production, which is 

consumed by herbivores, which are, in turn, consumed by carnivores.  The abundance of 

herbivores can therefore be controlled through top-down mechanisms, such as predation 

[3-5], or through bottom-up constraints on primary production, such as soil fertility 

(Figure 1) [6-9].   

 

Trophic cascades in linear models of herbivore regulation (Figure 1,) involve the knock-

on effects of predation expressed at alternate trophic levels [10].  In the classic example, 

predators limit the abundance of herbivores, which releases grazing pressure on plants 

(the ‘green world’ hypothesis) [11].  In this hypothesis, the abundance of vegetation is 

determined largely by the availability of abiotic resources as herbivores are regulated by 

predators  [5, 12]. 

 

Previous research has elucidated the complexity of trophic interactions by breaking each 

trophic level into more fundamental components (Figure 1). Specifically, the role of 

abiotic factors, disturbances, quality and quantity of primary production, and the effect of 

body size have each been shown to influence independently the distribution and 
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abundance of herbivores.  Here, we show how common underlying environmental 

gradients influence both top-down and bottom-up regulation simultaneously. Differences 

in the relative accessibility of limiting resources can cause ecosystems with similar 

species to have different regulatory mechanisms. In addition, the body sizes of herbivores 

determine both their susceptibility to predators and their resource requirements.  We 

show how this generalized model accounts for observed differences in the trophic 

functioning of the large herbivore community in savanna sites across Africa.  Although 

humans evolved in African savannas and historically affected herbivores through hunting 

and fire, substantial landuse changes and increasing human populations have put 

unnatural demands on these systems, which calls for a better understanding of ecosystem 

dynamics.  

 

Predation: not all herbivores are affected equally 

The simple food-chain view of predator-prey interactions (Figure 1) ignores the fact that 

not all carnivores can consume all herbivores, and not all herbivores are equally 

susceptible to all carnivores. Large prey, such as buffalo (Syncerus caffer), are difficult to 

capture and are only consumed by the largest predators, such as lion. Whereas small 

predators can only consume small prey, large predators might consume both large and 

small prey (Figure 2a) [13, 14].  Recent work proposes that predation has a greater impact 

on regulating a population of small body-sized herbivores (e.g. oribi, Ourebia ourebi) 

when the prey base of small predators is nested within that of large predators as this 

exposes smaller herbivores to more enemies (Figure 2a) [15].  Conversely, if predators 

specialize on particular size classes of prey (i.e. they partition the prey base), predation 
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pressure is expected to be relatively even across all body sizes, until the prey become too 

large (Figure 2b).   

 

Therefore, the degree of regulation of herbivore populations by predation depends on 

both the relative body size of predators and prey, and the way in which the available prey 

base is partitioned by carnivores of different sizes (Figure 3a). Furthermore, the largest 

predators (lion) are also the most dominant and actively kill smaller predators (cheetah, 

hyena), or chase them away from their prey (Figure 3a) [16, 17].  

 

Recent studies provide evidence that both size-nested and size-partitioned predation 

occurs (Figure 3b).  In the Serengeti system (Tanzania) large prey, such as buffalo 

(450kg), generally escape predation except from cooperatively hunting lions, while oribi 

(18 kg) are eaten by many species [3, 18] illustrating size-nested predation (Figure 3b). 

Studies in Kruger Park, Hluhluwe-iMfolozi, and Phinda (South Africa) provide evidence 

for size-partitioned predation  where large predators, such as lion, concentrate on prey 

centered around the predators’ body mass [4, 19] (but see Ref. [15]).  Only prey species 

with a body mass >1000kg, such as hippo (Hippopotamus amphibius) and white rhino 

(Ceratotherium simum), tend to escape predator regulation in Kruger, whereas prey 

species heavier than 150kg, such as buffalo, escape predator regulation in Serengeti.  The 

largest herbivores, such as elephant (Loxodonta africana), are too big to be captured 

irrespective of whether predation is size-nested or size-partitioned [20, 21] (with the 

exception of juveniles).   
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In summary, top-down processes are modified by the way in which carnivores partition 

their food niches and the degree to which larger carnivores dominate smaller carnivores. 

Explanations as to why there are differences in the mechanism of niche partitioning of 

predators in otherwise similar food chains can be found in the type of vegetation that 

supports herbivores and the disturbance regime, which we explore below. 

 

Forage quality and abundance: not all that is green is edible 

Geographic processes involving erosion of parent material, and rainfall, determine key 

environmental gradients, such as soil fertility and water availability [22, 23], which 

influence vegetation structure [7, 24, 25]. Plant structure, in turn, determines the quality 

and quantity of digestible material available to herbivores (Figure 4a) [9, 26-30].  Primary 

production varies along environmental gradients [31] and regulates herbivore populations 

through classic bottom-up processes of resource limitation (Figure 4a) [8, 32-34]. The 

quantity of primary production increases with rainfall and soil fertility, such that in the 

absence of herbivory or fire, the largest standing biomass is found in fertile areas with 

unlimited moisture while declining when either water or soil nutrients become limiting 

(Figure 4b) [7, 29, 35].  Under high rainfall conditions, plants invest more resources in 

structural support and protection against herbivory (e.g. stems, lignified tissues, 

secondary compounds and mechanical defenses [35, 36]).   As a result, the digestible 

quality of primary production is inversely related to rainfall (Figure 4b), such that the 

amount of energy and nutrients per unit biomass that is extractable by herbivores declines 

as conditions become wetter [37]. 
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Herbivory provides the most direct access to consumable energy and has evolved 

multiple times in many unrelated taxa (e.g. molluscs, birds, mammals, insects, reptiles, 

fish, and marsupials) from both carnivorous and detrivorous ancestors [38]. To digest 

cellulose, ungulates use a symbiotic fermentation process in the rumen or caecum that is 

relatively time-consuming and requires a specialized gastrointestinal tract.  Small 

ungulates like oribi and Thomson’s gazelle (Gazella thomsoni) have smaller 

gastrointestinal systems, and therefore shorter ingesta retention times [20, 21, 39], which 

means they cannot process coarse vegetation.  Furthermore, small endotherms have a 

higher energy expenditure per unit mass.  These two factors mean that small herbivores 

have to select the most nutritious, highest energy forage (Figure 4c) [26, 28, 40, 41].  

Larger herbivores are relatively unconstrained by the size of their gastrointestinal tract, 

they have longer retention times, and so can extract sufficient energy from poorer quality 

food, providing there is sufficient quantity [40, 42] (Figure 4c).  

 

In summary, plant quality and biomass are determined by both environmental gradients 

and plant growth form (Figure 4a).  These affect small and large herbivores differently 

due to differing metabolic constraints. The result is that smaller herbivore populations are 

nutritionally limited by the quality of forage, whereas populations of larger grazers are 

limited by the quantity of food (Figure 4d).  

 

The role of disturbances, facilitation and ecosystem engineers 

Sudden shifts in primary production caused by abiotic disturbances such as fire, or 

marked changes in consumption rates (either herbivory, predation or infection) 
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potentially rearrange the dynamics of an ecosystem either temporarily or semi-

permanently into a new state [43, 44].  Given that local densities of herbivores can be 

regulated by both predation and attributes of the plant community (e.g. structure, quality 

and quantity), disturbances are factors that can change the primary mechanism of 

herbivore regulation and lead to nonlinear responses in abundance (Figure 5a) [22, 45-

47]. 

 

Reciprocal effects occur between large herbivores and primary producers (represented 

with double arrows in Figure 5a) that can lead to grazing facilitation between species [25, 

48, 49]. Mega-herbivores, such as white rhino or hippo, create and maintain low-biomass 

grass swards composed of nutritious grazing-tolerant grasses, which subsequently support 

other smaller grazers [50, 51].  The repetitive grazing of specific patches by multiple 

species where more dung and urine are deposited might have similar consequences, 

resulting in fertile hotspot locations where grazers consistently occur over time [52, 53]. 

 

Reciprocal interactions alter the probability of a disturbance occurring in an ecosystem, 

whereas interaction modifiers (as per Ref. [14]) alter the severity of a disturbance. For 

example, the relative proportion of trees and grasses in a savanna influences its potential 

flammability [54] because grasses (which senescence seasonally) contribute more to the 

fuel load than do trees.  Once grasses dominate the plant community, owing to 

disturbances such as herbivory (e.g. Ref. [55]), a positive feedback between grass 

abundance and fire frequency can arise (double arrow in Figure 5a). In addition, the 

accumulation of grass biomass also alters the intensity of a fire (dotted line in Figure 5a), 
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which when combined with the positive feedbacks between fire frequency and grass 

abundance, maintains an open grassland landscape, preventing tree invasion [54, 56-58]. 

As a result, fires can prevent invasion of grasslands by trees, which is engineered, in part, 

by the grazing intensity of herbivores [59, 60].  

 

Disturbances such as grazing and fire can act additively in savanna systems by changing 

the competitive balance between grazing tolerant and intolerant grasses (Figure 5b) [46] 

and influencing the nutritional quality of the forage supporting herbivores (Figure 5c) 

[61, 62].  So where some savannas have sufficient rainfall to support closed forests, they 

persist as mixed grasslands owing primarily to disturbances [46, 63]. Thus, two systems 

with similar rainfall and nutrient regimes could have different woodland-grassland 

structures because disturbances push systems between multiple states [55, 58] and this, in 

turn, affects the abundance of herbivores.   

 

Emerging properties: top-down and bottom-up processes are not mutually 

exclusive 

The separate roles of predation (Figure 3a), primary production (Figure 4a), or 

disturbance (Figure 5a) in the regulation of herbivore populations have different 

consequences when they are combined as opposed to when considered separately.  

Underlying environmental and landscape gradients affect top-down and bottom-up 

processes simultaneously [2] by influencing the forage quality and quantity available to 

herbivores while changing their exposure to predation (Figure 6a).  Thus, in Kruger 

rainfall simultaneously affects predation and primary production [64].  Moreover, the 
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topography of the landscape (e.g. hills, catenas and rivers) affects the quality and 

abundance of primary production available to herbivores [7, 22, 45], while at the same 

time determines the amount of cover for a predator, and increases their hunting success 

by concealing them from their prey (Figure 6b, c) [65-69]. These indirect (Figure 4a), 

additive (Figure 5a), reciprocal (Figure 5a), and interaction-modifying (Figure 5a) 

relationships strengthen the interdependencies between primary production, disturbances 

and predation in regulating herbivores (Figure 6a). 

 

The scale of heterogeneity determines the mode of regulation 

Top-down and bottom-up processes are modified by the scale of both spatial and 

temporal heterogeneity [70]. Suitable habitats can occur heterogeneously at a coarse scale 

where large patches are separated by long distances, or as a fine-scale mosaic [71, 72]. 

When heterogeneity is coarse, herbivores migrate long distances between suitable 

patches. When habitats are locally heterogeneous animals move frequently between small 

patches but do not move far. On a temporal scale, strong seasonality causes animals to 

move between patches as phenological conditions change (such as the seasonal drying of 

grass), whereas weak seasonality enables animals to remain in local areas. The 

consequences of these different scales are seen in the long-distance seasonal migrations 

of wildebeest (Connochaetes taurinus) in Serengeti, Coke’s hartebeest (Alcelaphus 

buselaphus) on the Athi plains of Kenya, or white-eared kob (Kobus kob leucotis), topi 

(Damaliscus lunatus) and Mongalla gazelle (Gazella thomsoni albonotata) in Sudan [1]. 

Such movements reduce the impact of predation as predators cannot follow the 

herbivores over these long distances [73, 74] and result in bottom-up regulation [34] (Box 
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1). By contrast, fine-scale spatial and temporal heterogeneity keeps herbivores within the 

territories of predators and results in top-down regulation. This distinction is seen by 

comparing resident wildebeest in Pilanesberg, Hluhluwe-iMfolozi, Kruger (South 

Africa), Ngorongoro Crater (Tanzania), and Etosha (Namibia) [4, 75-78] which are 

predator-regulated, to migrant wildebeest in Serengeti [34] which are food-regulated 

(Box 1). Therefore, abiotic gradients influencing the regulation of herbivores at large 

scales through predation and nutrition are replicated at finer scales and determine how 

animals are distributed over a landscape [79].  

 

Abiotic gradients determine the direction of regulation  

The availability of abiotic factors, such as soil nutrients and rainfall, determines the mode 

of population regulation of herbivores [2, 80]. High nutrient supply, such as in volcanic 

or riparian soils, leads to higher quality plant forage as seen in eastern Kruger, southern 

Serengeti and Samburu (Kenya) [71, 81]. Plants with high nutrient content and low 

amounts of fiber can support animals of small body size that are top-down regulated.  By 

contrast, sandy soils of granitic origin are low in nutrients, and result in fibrous plants that 

are less digestible. Such plants are eaten by large herbivores, such as elephants and 

buffalo, which are bottom-up regulated [29, 42, 82]. This gradation forms the basis for 

our interpretation of the different savanna systems in Africa, which we describe below.  
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The integration of allometric differences in susceptibility to top-down and bottom-up 

regulation along gradients of productivity enables an interpretation of the various 

herbivore dynamics across African savannas (Figure 7). The relative importance of 

predation, forage quality and forage abundance in regulating grazers should change under 

different rainfall and soil fertility regimes.  Figure 7 proposes how different areas in 

Africa, often with functionally similar species, could be regulated by different 

mechanisms along gradients of rainfall and soil fertility [27-29].  

 

The highest vegetative biomass occurs with high water availability (rainfall or flooding) 

on fertile soils usually of volcanic or fluvial origin seen best in the Ruwenzori grasslands 

(Uganda), the Nile floodplains and the flooded Boma grasslands of southwest Sudan. 

(Figures 3b, 6a) [61, 83-85].  Under these moist fertile conditions, the quantity of food is 

effectively unlimited and, therefore, regulates only the largest herbivores (dashed blue 

line, Figure 7a).  However, high rainfall causes the grass to have a large proportion of 

poor quality stems, making digestion more difficult and reducing the overall nutritional 

quality (dashed green line, Figure 7a).  The high standing biomass under high rainfall 

conditions also conceals predators, making small grazers more susceptible to top-down 

effects (solid red line, Figure 7a).  As a result, under high rainfall and fertile conditions, 

small herbivores become regulated by predation, as in the Ruwenzori system [86], 

whereas medium and large herbivores are regulated by the quality of the available forage 

since the quantity is effectively limitless.   
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In contrast, forage quality is highest under low rainfall conditions on fertile soils, such as 

on the open treeless Serengeti plains and the saline soils of Etosha. Here, the low grass 

biomass exposes predators making them visible to herbivores, and results in minimal top-

down regulation.  Instead, the quantity of forage regulates the number of medium and 

large grazers, with predation accounting for most of the mortality in only the smallest size 

classes (Figure 7b) [41].  The quality of the grass has little impact on regulating 

populations, because nutritious forage is abundant and readily available.  

 

The nutritional quality of grass is lowest in high rainfall areas with infertile soils and, 

therefore, becomes more important in regulating herbivore populations (Figure 7c).  Such 

areas can be found in the broad-leaved miombo woodlands of the south and central 

African plateau, such as Selous (Tanzania), Hwange (Zimbabwe), Chobe (Botswana) and 

Kafue (Zambia), the coastal sand dune savannas of St. Lucia (South Africa) and the 

Maputu Elephant Reserve (Mozambique), and the moist savannas of Garamba (DRC) and 

Mole (Ghana) [29, 87-89].  In these communities, there is a high biomass of woody 

vegetation but also of tall grasses of lower nutritional value, which support fewer 

herbivores and predators than areas with fertile soils. Predation is expected to be high 

because the high grass biomass conceals predators, making them more effective [66, 68].  

The requirements of small herbivores for high forage quality combined with their 

susceptibility to predation limit their abundance in these areas (Figure 7c).  The dominant 

grazers are elephants [29, 89]. Even mega-herbivores might not be able to escape the 

limitations of quality because the methane production associated with ingesting a lot of 

low quality food reduces their capacity to absorb nutrients [39].   
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Semi-arid systems with infertile soils, such as Tsavo and Samburu (Kenya), and the 

Kgalagadi Transfrontier (South Africa and Botswana), tend to have sparse and 

nutritionally poor plants, supporting lower herbivore densities and, as a result, fewer 

predators [29, 90, 91].  These conditions are more extreme in desert environments, such 

as the stony plains of the Jiddah (Oman) home of the Arabian oryx (Oryx leucoryx) [92], 

and the Ouadi Achim Faunal Reserve (Chad) where the scimitar-horned oryx (O. 

dammah) used to live [93], and the Skeleton Coast (Namibia).  Under these conditions, 

predation does not limit herbivore abundance.  Herbivores are regulated by forage quality 

(especially for smaller herbivores) and forage quantity (for larger animals) (Figure 7d). 

 

Conclusions and future directions 

Predation and competition for resources interact synergistically rather than operate 

independently [94]. Reciprocal, indirect, additive and interaction modifying relationships 

shape this synergism to explain functional differences between ecosystems.  In essence, 

the interplay between: (i) the availability of limited abiotic resources (such as nutrients 

and rainfall) that determine the quality and quantity of primary production; (ii) the 

evolutionary tradeoffs related to body size (including predation sensitivity, digestive 

capacity and metabolic requirements); (iii) adaptive behaviors (such as migration or 

group vigilance), which enable primary consumers to escape regulation; and (iv) the 

extent and frequency of disturbances (such as fires, storms, extreme temperatures, salinity 

shifts, scouring, etc.) are processes affecting how predation and competition collectively 

structure communities.  This conceptual structure yields testable predictions for how 
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global environmental changes might affect the distribution of different sized herbivores 

and potential regime shifts in ecosystem dynamics [95]. For example, changes in rainfall 

due to global warming could shift the importance of food and predation in regulating 

herbivore populations, such that decreasing rainfall would push an ecosystem along the x-

axis in Figure 7 from panel a to b, or c to d.  The evolutionary role of early hunter-

gatherer humans in regulating herbivores as predators and as agents of disturbance fits the 

framework of Figure 6.  However, modern humans have escaped from factors regulating 

their population density, which destabilizes framework. 

 

Future research should test the predictions of Figure 7.  More data are required to resolve 

the consequences of predation.  Specifically, the analysis of herbivore carcasses suggests 

small prey are prone to many predators (i.e. size-nested predation, Figure 2a) [3], but this 

is not supported by data on carnviore diets which suggest predation is size-partitioned 

(Figure 2b) [4]. In addition, an evaluation of mortality in juvenile age classes might show 

that predation by a single predator, with low capture rates, could still impose strong 

population regulation, especially for larger species.  

 

In summary, we propose that abiotic factors determine the importance of predation, 

forage quality and forage abundance in regulating herbivores of different sizes (Figure 7) 

and this alters the relative strength of the connections between biotic and abiotic 

components in ecosystems (Figure 6a).  The availability of key environmental resources 

has profound consequences for herbivore regulation and ecosystem dynamics by 

simultaneously affecting multiple top-down and bottom-up processes.  The different 
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herbivore dynamics of the many savanna systems of Africa can be understood in the 

context of this framework.  These concepts could help our understanding of other 

ecosystems where strong abiotic gradients influence the shape of the community (such as 

salinity and desiccation in intertidal ecosystems, dissolved oxygen and opacity in aquatic 

ecosystems, or body mass and predation risk in avian communities). The strength of this 

framework is that it captures how environmental gradients can switch top-down and 

bottom-up processes that regulate animal abundance.  
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Box 1. Adaptive responses to regulation: migrations, crypsis and vigilance 

 

Large herbivores are occasionally found in areas of low plant biomass while small 

herbivores are sometimes found in areas of high plant biomass, which is contrary to the 

expectations of Figure 7 (main text). The realized niche of many herbivores differs from 

expected because they escape regulation through behavioral and physiological 

adaptations selected through evolutionary time [26].   

 

For example, migrations enable a population to escape the limitations of both low forage 

biomass and predation.  By sequentially moving between the best available food patches 

migrants are in essence increasing the total available biomass of highest quality food, 

without exhausting the overall food supply.  Small resident populations of wildebeest in 

Pilanesberg, Kruger and Serengeti are regulated by predation [64, 77], whereas the large 

migratory wildebeest population in the Serengeti (~1.2 million) are regulated by the 

availability of sufficient forage especially during the dry season when food is most 

limited [34]. Other resident herbivore species in Kruger (e.g. roan, Hippotragus equinus) 

and Serengeti become more predator regulated in areas they share with migrant 

populations, because the seasonal influx of migratory prey supports more predators that 

tend to supplement their diet with resident prey [80].  As a result, the abundances of 

migrants versus residents can differ by orders of magnitude [73, 74, 76].  In 

circumstances where migratory routes are blocked the population declines rapidly [1] and 

becomes predator regulated.  Migrations explain how very large herbivores can persist in 

low biomass areas, such as the paradox of mammoths which occupied the low biomass 
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habitats of the tundra. Other behavioral adaptations to predation include group dilution 

and group vigilance where individuals decrease their probability of being caught [96].   

 

Avoiding predators through habitat selection or crypsis requires physiological 

adaptations.  For instance, addax (Addax nasomaculatus), gemsbok (Oryx gazelle) and 

Arabian oryx avoid predators by living in very arid habitats, however they require 

complex adaptations for water retention and cooling [97].  Digestive adaptations are 

required especially by small energetically constrained herbivores relying on crypsis in 

thick low-quality vegetation [98]. In both circumstances, populations escape predation 

but become regulated at much lower densities by forage quantity and quality, 

respectively.  
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Figure 1. Several factors are responsible for regulating herbivore abundances across 
ecosystems.  In this classic food chain approach, the abundance of herbivores is 
regulated by top-down processes, such as predation, and by bottom-up processes 
through primary production (arrows indicate the direction of influence).  
Herbivores (like carnivores) are considered as a single unit, despite showing strong 
functional divergences based on body size.  Primary production in this framework 
is a general term that fails to distinguish the differences between the quality, 
quantity, and structure of a plant community. 

 
Figure 2. The degree of herbivore mortality due to predation depends on the predators’ 

diet selection.  (a) If large predators are opportunists and consume prey of all sizes, 
while small predators only kill small prey, then the prey base of small predators is 
nested within that of large predators (size-nested predation).  The cumulative 
mortality on small prey is much greater than large prey because they are exposed to 
more predators. (b) If predators are selective, and only consume prey of a specific 
size classes (size-partitioned predation), then large predators do not supplement 
their diet with small prey.  When predation is size-partitioned as opposed to size-
nested, the cumulative mortality due to predation on small prey is much less, 
whereas large prey are killed more often. 

 
Figure 3. The relative importance of predation in regulating herbivore populations 

depends on the body size of predators and their degree of specialization for certain 
prey. (a) If large carnivores only eat large prey, and small carnivores only eat small 
prey (solid vertical lines), the prey base is partitioned.  If large carnivores eat both 
large and small prey (solid and dashed vertical lines), the prey base of smaller 
carnivores is nested within that of larger carnivores.  Large carnivores dominate 
small carnivores and reduce their efficiency (solid horizontal line). (b) When 
predation is nested, small prey are exposed to more predator species and become 
increasingly predator regulated, as in the Serengeti example (solid line).  When 
predation is partitioned, large prey suffer greater predation than do small prey 
because large predators do not supplement their diet with small prey, as in the 
Kruger example (dashed line). Data for Serengeti and Kruger reproduced with 
permission from Refs. [3, 4, 64]. (Abbreviations: B = African Buffalo, E = 
Elephant, G = Giraffe, H = Hippo,I = Impala, O = Oribi, R = Black Rhino, T = 
Topi, W = resident Wildebeest, Z = resident Zebra) 

 
 
Figure 4. The quality versus quantity of primary production regulates large herbivores 

differently from small herbivores. (a) Physical and environmental gradients have 
direct and indirect affects (i.e. between non-adjacent levels) on the plant 
community structure and on the quality and quantity of primary production. (b) For 
example, the quantity of plant biomass is positively related to increasing rainfall 
and soil fertility, whereas the digestible quality of the plant declines with increasing 
rainfall. (c)  Large herbivores consume greater quantities of lower quality food, 
whereas small herbivores consume less food of higher quality because they are 
constrained by their high metabolism and limited digestive capacity. (d) Therefore, 
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large herbivores, such as elephant, tend to be regulated by food abundance (dashed 
blue line), whereas smaller herbivores, such as wildebeest, are regulated by food 
quality (dotted green line).  The smallest herbivores, such as oribi, are mainly 
predator regulated (solid red line). Reproduced with permission from Refs. [35] (b) 
and [21] (c). 

 
 
Figure 5. Abiotic and biotic disturbances, such as fires or intense grazing, alter the 

primary production and the plant community structure of a landscape which, in 
turn, affects the abundance of different sized herbivores.  (a) Disturbances can have 
reciprocal effects (double arrows) on primary production.  For example, herbivores 
can reduce the biomass of grass, which reduces the probability of fire; but, 
conversely, fires removes grass necromass which stimulates re-growth of high 
quality shoots that are preferred by herbivores. Interaction-modifying relationships 
(dotted arrow) alter the effects of a disturbance, such as large amounts of 
flammable biomass altering the severity of a fire. Positive feed-back loops have 
additive effects, such as grass biomass increasing the probability of a fire, which 
removes trees, and provides grass with a competitive advantage.  (b) Biotic 
disturbances, such as grazing lawns created by white rhino, modify the quality and 
quantity of vegetation over time by altering the competitive balance between 
grazing tolerant and grazing intolerant grass species (described by Refs. [46, 50, 
51]).  (c) Abiotic disturbances, such as fires, alter the short-term abundance and 
nutritional quality of the grasses available to herbivores by removing senescent 
vegetation and stimulating nutrient-rich re-growth (described by Refs [56, 61, 99]).  
Long-term species succession, could reverse this trend. 

 
 
Figure 6. An ecosystem template of the macroecological processes determining the 

abundance and distribution of herbivores. (a) Underlying environmental gradients 
simultaneously affect both the quality and quantity of forage available to herbivores 
as well as the efficiency of predators at capturing prey. Thus, bottom-up and top-
down processes are not independent.  For example, (b) lions select areas with   
denser vegetation, and (c) areas that are closer to rivers for hunting more often than 
expected, based on the availability of these resources across the landscape.  
Therefore, the plant community structure (such as % tree cover) and topographic 
features (such as rivers) contribute to the predation risk for herbivores, while 
simultaneously influencing the quality and quantity of forage available to them 
(data from Ref. [66]). 

 
 
Figure 7. Predictions of the relative importance of predation (solid red line), food quality 

(dotted green line) and food abundance (dashed blue line) in regulating herbivores 
of increasing body mass across rainfall and soil fertility gradients, assuming all else 
is equal (e.g. availability of drinking water, size and isolation of protected area, 
etc.). We consider herbivores between 10kg to 1000kg, with a major portion of 
grass in their diet [33]. (a) High rainfall and soil nutrients. Food abundance 
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regulates large herbivores, food quality regulates medium sized herbivores and 
predation regulates small herbivores. (b) Low rainfall, high soil nutrients. Food 
quality does not regulate. Food abundance regulates large and medium sized 
herbivores, predation regulates small ones. (c) High rainfall, low soil nutrients. 
Food quality regulates all herbivores, with predation acting synergistically at small 
size, and food abundance at very large size. (d) Low rainfall and soil nutrients. 
Predation is not regulating, food quality acts at small size and food abundance at 
medium and large sizes. For more details see main text. If rainfall patterns change 
due to global warming, herbivore regulation within a savanna ecosystem is 
predicted to shift from panel a to b, or c to d, or visa versa.  

 

 

 

 27



Carnivores
Large

carnivores
Small

carnivores

Herbivores
Large

herbivores
Small

herbivores

Primary production

and

Plant community structure and
plant architecture
(i.e. growth forms)

Abiotic variables

Geological topography

Underlying environmental
gradients

(e.g. soil or water quality,
currents and climate)

Disturbances
(e.g. fire, frost, flooding

and El Niño)

Quantity Quality

Grant
Text Box
Figure 1



H
er

bi
vo

re
 m

or
ta

lit
y

ca
us

ed
 b

y 
pr

ed
at

io
n 

(%
)

Prey body mass Prey body mass

pr
ed

at
or

 d
ie

t (
%

)

Small predator

Medium predator

Large predator

Small
predator

Medium
predator

Large
predator

(a) Size-nested predation (b) Size-partitioned predation

Grant
Text Box
Figure 2



Large
carnivores

Small
carnivores

Large
herbivores

Small
herbivores

Primary production

Quantity Qualityand

Plant community structure and
plant architecture
(i.e. growth forms)

Abiotic variables

Geological topography

Underlying environmental
gradients

(e.g. soil or water quality,
currents and climate)

1
0

20

40

60

80

100

P
re

da
tio

n 
(%

)

2 3 4
Log [herbivore weight (kg)]

(a)

O I T W Z B G R H E
(b)

Disturbances
(e.g. fire, frost, flooding

and El Niño)

Grant
Text Box
Figure 3



Large
herbivores

Small
herbivores

0
0

1

2

3

P
la

nt
 N

 c
on

c.
 (%

)

400 800 1200
Rainfall (mm yr-1)

0

400

800

1200

P
la

nt
 b

io
m

as
s 

(g
 m

-2
)

Fertilized

Unfertilized

0
0.0

0.5

1.0

1.5

Lo
g 

(%
 c

ru
de

 p
ro

te
in

in
 in

ge
st

a)

1 2 4
Log [body mass (kg)]

0

1

2

4

Lo
g 

[g
ro

ss
 d

ai
ly

 in
ta

ke
 (g

)]

3

3

Large
carnivores

Small
carnivores

Quantity Quality
Primary production

and

Plant community structure and
plant architecture
(i.e. growth forms)

Geological topography

Underlying environmental
gradients

(e.g. soil or water quality,
currents and climate)

Poor soils
Rich soils

R
el

at
iv

e 
im

po
rta

nc
e 

in
 p

op
ul

at
io

n 
re

gu
la

tio
n

Oribi
Duiker

Klipspringer
Dikdik

Impala
Nyala

Th. gazelle

Wildebeest
Zebra

Waterbuck
Greater kudu

Buffalo Hippo
Elephant

Bottom-up regulat ionTop-down regulat ion

Predation

Food quality

Food abundance

Body size

(a)

(c)

Disturbances
(e.g. fire, frost, flooding

and El Niño)

(b)

(d)

Grant
Text Box
Figure 4



Large
herbivores

Small
herbivores

Large
carnivores

Small
carnivores

Quality
Primary production

and

Plant community structure and
plant architecture
(i.e. growth forms)

Geological topography

Underlying environmental
gradients

(e.g. soil or water quality,
currents and climate)

R
el

at
iv

e 
m

ea
su

re

Grass quality

Grass biomass

Duration since lawn formation

Quantity

R
el

at
iv

e 
m

ea
su

re

Grass quality

Grass biomass

Duration since fire

(a)

(b)

Disturbances
(e.g. fire, frost, flooding

and El Niño)

(c)

Grant
Text Box
Figure 5



Large
carnivores

Small
carnivores

Quality
Primary production

and

Plant community structure and
plant architecture
(i.e. growth forms)

Geological topography

Underlying environmental
gradients

(e.g. soil or water quality,
currents and climate)

Quantity C
at

ch
ab

ili
ty

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y 
of

 o
cc

ur
en

ce

10–200–10
% Woody vegetation

Available to hunting lions

20–30 30–40 40–50 50–60+

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y 
of

 o
cc

ur
en

ce

0.5
Distance to river (km)

0.6

0.7

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0+

Large
herbivores

Small
herbivores

Selected by hunting lions

(a)

(b)

Disturbances
(e.g. fire, frost, flooding

and El Niño)

(c)

Grant
Text Box
Figure 6



R
el

at
iv

e 
im

po
rta

nc
e 

in
 p

op
ul

at
io

n 
re

gu
la

tio
n

Body size

Medium grass biomass
Low grass nutrients

High grass biomass
Medium grass nutrients

Low grass biomass
Low grass nutrients

Low grass biomass
High grass nutrients

High rain Low rain

H
ig

h 
so

il 
fe

rti
lit

y
Lo

w
 s

oi
l f

er
til

ity

Predation
Food quality
Food abundance

(a)

(c)

(b)

(d)

Grant
Text Box
Figure 7


	Hopcraft_Alternating regulation - final with figures.pdf
	 
	Corresponding author: Hopcraft, J.G.C. (granthopcraft@fzs.org). 
	The scale of heterogeneity determines the mode of regulation 
	Abiotic gradients determine the direction of regulation  

	  References 
	 


	Hopcraft_Alternating regulation_Figures - final.pdf
	Figures from Dick.pdf
	Grantfig1.pdf
	Grantfig2.pdf
	Grantfig3.pdf
	Grantfig4.pdf
	Grantfig5.pdf
	Grantfig6.pdf
	Grantfig7.pdf

	Grantfig21.pdf
	Grantfig41.pdf




