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ScienceDirect
Natural evolution has produced a great diversity of proteins that

can be harnessed for numerous applications in biotechnology

and pharmaceutical science. Commonly, specific applications

require proteins to be tailored by protein engineering. Directed

evolution is a type of protein engineering that yields proteins

with the desired properties under well-defined conditions and

in a practical time frame. While directed evolution has been

employed for decades, recent creative developments enable

the generation of proteins with previously inaccessible

properties. Novel selection strategies, faster techniques, the

inclusion of unnatural amino acids or modifications, and the

symbiosis of rational design approaches and directed evolution

continue to advance protein engineering.
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Introduction
Synthetic biology describes the engineering of biological

parts and whole systems by either modifying natural

organisms or building new biosystems from scratch. Till

date, most proteins used as parts in synthetic biology are

taken from nature. Utilizing naturally evolved proteins

has led to numerous successful applications in biotech-

nology. Nevertheless, these applications invariably

benefit from an optimization of the original natural

proteins by protein engineering [1]. In contrast, building

entirely artificial proteins that do not resemble natural

proteins is still a major challenge [2–4] and therefore

much less common than the engineering of natural

proteins for new or improved properties.

Protein engineering has developed into a multi-faceted

field with hundreds of publications in the last two years

alone. This field encompasses a variety of approaches for

creating desired protein properties, ranging from purely
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computational design to selecting proteins from entirely

random polypeptide libraries. Because of the incredible

breadth of the field, and to enable us to focus on recent

advances, we will direct the reader to excellent reviews on

the fundamentals of directed evolution technologies [5–
9] and computational protein design [10–12]. This review

will therefore focus on the latest developments in the

directed evolution of proteins (Figure 1).

Advancing selection technologies
In any directed evolution experiment, the isolation of the

desired protein from a library of gene variants is the

crucial step. Many efforts have been made to push the

boundaries of evolution schemes, attempting to create

better protein libraries, new selection systems with

improved features, and faster selection procedures

(Figure 2).

Maximizing library quality

The chance of discovering desired protein variants is

directly related to the quality and complexity of the

starting library. For example, random mutations that

destabilize a protein can be detrimental. Therefore,

building libraries with a high potential of containing

functional proteins is vital. ‘Smarter’ libraries have been

pursued that are less complex but of high-quality [13]. To

build those libraries, targeted mutagenesis guided by

structural or phylogenetic information, the use of com-

pensatory stabilizing mutations and other approaches

have successfully been applied [14,15]. Alternatively, a

library maximizing complexity while enriching for well-

folded proteins was constructed based on one of nature’s

most common enzyme folds, the (b/a)8 barrel fold. All

residues on the catalytic face of the protein scaffold were

randomized and, simultaneously, the library was enriched

for protease resistance by an mRNA display selection,

which has been correlated with well-folded and therefore

more likely functional proteins [16�].

Refining selection steps

In vivo directed evolution of membrane proteins has been

challenging due to toxicity of either the membrane protein

or the selection conditions. Liposome display is a new

method that has enabled in vitro directed evolution of toxic

integral membrane proteins [17��]. This approach creates

giant unilamellar liposomes and encapsulates a single

DNA molecule along with a cell-free translation system.

Each liposome will therefore display many copies of a

single variant. Coupling protein activity to a fluorescent

signal enables subsequent sorting by fluorescence-

activated cell sorting (FACS). This approach was applied

to evolve an a-hemolysin mutant with pore-forming
Current Opinion in Chemical Biology 2014, 22:129–136
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activity 30-fold greater than wild-type. In addition to

membrane protein toxicity, selection conditions can be

challenging when using lipid-based barriers, for example

when selecting for stability in detergent. To overcome this

issue, a cellular high-throughput encapsulation, solubil-

ization, and screening method (CHESS) was developed to

screen a library of G-protein coupled receptor (GPCR)

variants [18�]. GPCRs are an important group of drug

targets. A library of 108 variants was expressed in Escherichia
coli and the cells where then encapsulated in a polymer.

The cells were lysed, but the ‘nano-container’ trapped the

GPCR variants along with their encoding DNA while

allowing free diffusion of fluorescent ligands and thereby

enabling FACS. With this technique, functional receptors

were identified in the presence of the detergent of choice.

The use of bead display for directed evolution has been

limited by very few copies of DNA or displayed protein

[19–23]. Recently, a ‘megavalent’ bead surface display

(BeSD) system was developed to allow the display of

protein and its encoding DNA in defined quantities up

to a million copies per bead [24]. This method combines

advantages of in vitro selections with multivalency of in vivo
display systems, enabling the ranking and sorting of the

output variants of an in vitro selection by flow cytometry.

Protease enzymes have a tremendous potential in medi-

cine and biotechnology but engineering their activities

via directed evolution for altered specificity, instead of

simply broadening activity, has been successful until

recently in only a few select cases using E. coli cell surface

display of the E. coli outer membrane protease T [25].

This system is limited to the relatively few bacterial

proteases that can be displayed and active on the prokar-

yote’s cell surface. To enable the engineering of more

complex mammalian proteases, yeast surface display was

modified to evolve novel protease specificity. In the

revised system, both the protease variants and a yeast

adhesion receptor were colocalized inside the endoplas-

mic reticulum (ER) through attached signal sequences

[26��]. Successful proteolytic cleavage of a linker region
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detached the ER retention signal and enabled the yeast

surface display of the adhesion receptor including its

FLAG tag, which was then identified by anti-FLAG

antibodies. Counter-selection tags were also incorporated

to improve the selectivity of resulting protease variants.

This method was used to alter the specificity of tobacco

etch virus protease, as well as granzyme K and hepatitis C

virus protease, and was even modified to demonstrate in

principle the selection of kinase activity.

A directed evolution approach was devised to improve the

targeting specificity of an engineered methyltransferase.

Methylation of only a single site in a target DNA was

selected for by digesting with a target site-specific restric-

tion endonuclease and a second, unusual restriction

enzyme that digests DNA with two distally methylated

sites [27]. This method identified methyltransferase var-

iants that showed 80% methylation at the target site and

less than 1% methylation at off-target sites.

Phage assisted continuous evolution (PACE) enables the

sustained evolution of protein variants through hundreds

of rounds of evolution in a week with little researcher

intervention [28]. This method was used to probe evol-

utionary pathway independence by evolving RNA poly-

merases for various promoter specificities [29�]. RNA

polymerases that initially recognized the T7 promoter

were evolved to recognize T3 or SP6 promoters separ-

ately, and then a final hybrid promoter of T3 and SP6.

The resulting RNA polymerases from the SP6 pathway

were �3–4-fold more active than those from the T3

pathway and further evolution did not diminish this

gap. Sequencing at multiple steps along the evolutionary

path further illuminated that the divergent populations

were unable to converge to the same solution. This

suggests that it may be beneficial to evolve through

multiple subpopulations instead of a single large popu-

lation. In additional work, PACE was improved to allow

the modulation of selection stringency via engineering

phage propagation to be dependent on the small molecule

anhydrotetracycline [30�]. Further, the authors enabled
www.sciencedirect.com
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counterselection to refine promoter specificity. The com-

bination of these methods was used to create RNA

polymerases with a 10 000-fold net change in promoter

specificity. While this method now enables fast selections

with advanced features such as counter-selection, it still

can only be used to evolve proteins or activities that

directly or indirectly involve expression, such as poly-

merase activity.
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The use of chaperonins such as GroEL and GroES during

directed evolution has been shown to allow more desta-

bilizing mutations and mutations in the protein core to

survive during evolution by stabilizing folding intermedi-

ates [31,32]. This chaperonin system was used to charac-

terize the evolutionary pathway for a natural

phosphotriesterase to a novel arylesterase [33�]. This

study demonstrated for the first time on a molecular level
Current Opinion in Chemical Biology 2014, 22:129–136
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how mutations found early during an evolutionary opti-

mization yield larger improvements than later mutations.

The results suggest that mutations seem to initially

cluster near the active site and then radiate towards

the rest of the enzyme to stabilize the early mutations.

Improving speed of selection

Two different strategies have significantly expedited the

directed evolution process for in vitro selections. In the

first strategy, many rounds of selection were performed

very quickly, followed by sequencing and characteriz-

ation of relatively few output sequences. For this purpose,

a modified version of mRNA display, named ‘TRAP

display’ was devised where the puromycin linker was

attached simply via base pairing instead of covalent

modification, enabling a round of selection in as little

as 2.5 hours compared to the traditional 2–3 days [34�]. In

just 14 hours and 6 rounds of selection, macrocyclic pep-

tides with low nanomolar affinity against human serum

albumin were selected.

In the second strategy, only a single round of stringent

selection was performed, but then a large number of

selected clones were analyzed by high-throughput se-

quencing to enable population-level statistical analysis.

Following this approach, nanomolar affinity binders were

identified after a single round of selection from the small

protein scaffold 10Fn3 (10th fibronectin type III domain)

with two random sequence loops, using the continuous

flow magnetic separation mRNA display technology

[35��]. The key to this approach was identifying the

clones with the most enriched copy numbers after selec-

tion. In another example of the same strategy, multiple

rounds of phage display biopanning of a heptapeptide

library was performed against target cells, but high-

throughput sequencing was performed at each step to

assess the value of each round [36��]. Overall, a single

round of screening was capable of identifying the best

binders when sequenced at sufficient depth; and multiple

rounds were only helpful in decreasing the background of

non-binders when sequencing a small pool.

Expanding the scope of selections to new
properties
Photoresponsive binders

Biological systems engineered to use light-sensing com-

ponents have attracted attention due to their vast poten-

tial applications and have been recently reviewed [37].

Similar efforts have developed photo-reactive peptide

aptamers for future use with in vitro or in vivo photo-

regulation, immunoassays, or bio-imaging analyses. Ribo-

some display of peptides that contained azobenzene-

modified lysine enabled the selection of UV-responsive

streptavidin binders [38]. A different approach used a

ribosome display scheme with a benzoxadiazole-modified

phenylalanine to select for calmodulin binding peptides

with single-digit micromolar affinity that fluoresce upon
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binding [39]. Two laboratories created cyclized peptides

via azobenzene linkers to select for light-responsive pep-

tides by phage display technology. A peptide cyclized via

azobenzene-modified cysteines flanking a randomized

7 residue peptide was capable of binding to streptavidin

in the dark and cease binding upon irradiation with a 22-

fold discrimination [40]. Likewise, a synthesized photo-

switchable azobenzene-based cyclization compound

enabled the identification of peptide binders with

single-digit micromolar affinity and a 3-fold change in

affinity upon UV exposure [41]. Photoresponsive peptide

ligands can now be selected with large UV-induced

binding affinity changes. In the future, in vivo activity

of evolved ligands needs to be demonstrated to further

their use in optogenetics.

Selecting unnatural peptide binders

Binding peptides are valuable for a variety of purposes

including detection assays and therapeutic applications.

mRNA display and cDNA display have been used

recently to create short peptide aptamers with unusual

structure or composition, creating new diversity and

thereby enabling the selection of binders with unique

properties. In one approach, up to 12 unnatural amino

acids were incorporated into an mRNA-displayed peptide

library using a custom-mixed cell-free PURE translation

system that was reconstituted from the purified com-

ponents necessary for E. coli translation. The peptides

were then cyclized via cysteine residues and the selection

yielded unnatural peptides with nanomolar binding affi-

nities for thrombin [42�]. A related approach created

mRNA-displayed lantipeptides by using a translation

system where lysine was substituted with 4-selenalysine,

and inducing post-translational elimination via H2O2 and

dehydroalanine. This provided an alternative cyclization

mechanism for a drug candidate library and yielded

binders with low micromolar affinity for sortase A [43�].
Similarly, a cDNA display library was cyclized [44] and a

phage display library was bi-cyclized [45] through dis-

ulfide bonds formed in cysteine-rich peptides and used to

select for peptide aptamers. Additional work on macro-

cyclic peptide selections has been recently reviewed [46].

Unnatural amino acids have also been used to decorate

peptides and evolve multivalent glycopeptides [47].

Alkyne-containing glycine residues were incorporated

into an mRNA-displayed peptide library to enable gly-

cosylation via click chemistry. A selection against a

broadly neutralizing antibody of HIV identified glycopep-

tides with potential as vaccine candidates.

Multi-subunit protein selections

Multi-subunit proteins are common, but directed evolu-

tion of these has been limited to in vivo methods, as

opposed to in vitro methods that are capable of screening

much larger libraries. To address this issue, an mRNA-

displayed Fab fragment was entrapped in emulsion PCR
www.sciencedirect.com
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enabling the in vitro selection of heterodimeric Fab

fragments [48�]. However, the emulsion step reduced

the library complexity to a similar range as in vivo
methods. To achieve an in vitro selection of multi-subunit

proteins of potentially up to 1014 variants, ribosome dis-

play was performed where one Fab subunit was random-

ized while the other subunit was held constant [49�]. This

was carried out with both heavy chain and light chain

libraries yielding tight binders to VEGF and CEA. While

cell-surface display of multi-subunit proteins has been

performed before, a notable advance is the description of

a mammalian cell-surface display that also features a

titratable secretion of the same Fab fragments through

alternate splicing of the pre-mRNA [50].

In vitro compartmentalization selections applied to new

reactions

The performance of in vitro compartmentalization (IVC)

methods has been improved in recent years with reported

screening speeds of 2000 droplets per second for water-in-

oil emulsion screening [51�]. A number of creative pro-

tocols have been developed for this technology and

applied to evolve enzymes capable of a range of chemical

reactions. This includes a generalizable screen for hydro-

genase activity [52], a selection for meganuclease speci-

ficity [53], an entirely microfluidic screen for hydrolytic

activity of a sulfatase [54�], and a quantitative screen for

glucose oxidase activity [55]. While the above methods

predominantly used custom-made microfluidic chips to

sort their water-in-oil emulsions, another study described

a generalizable method to produce water-in-oil-in-water

emulsions that can be sorted by standard FACS equip-

ment [56�]. This protocol enabled the generation of

monodisperse double emulsions at 6–12 000 droplets

per second, which can be stored for months to years

and manipulated to adjust their volume as needed. These

droplets can be sorted in a commercial FACS-machine at

10–15 000 droplets per second, while enriching active

variants by up to 100 000 fold. The downside to most

IVC methods is that fluorescence must be linked to

product formation.

Combining directed evolution with rational
design
The combination of rational design to create informed

libraries of variants with directed evolution to refine

activity and efficiency has become a recurrent theme in

protein engineering. A good example is the optimization

of a computationally designed Kemp eliminase by

directed evolution. Through rounds of error prone

PCR, DNA shuffling, and site-directed mutagenesis, this

artificial protein was refined to yield an enzyme that

accelerated the reaction 6 � 108-fold, approaching the

efficiency of natural enzymes [57��].

In another study evolving an unrelated artificial Kemp

eliminase, stabilizing consensus mutations were added
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during the library generation process. This stabilization

facilitated the identification of a variant with >2000-fold

improved catalytic efficiency after rounds of DNA shuf-

fling, error prone PCR and selection [58�]. Furthermore,

an artificial Diels-Alderase was evolved by combining

mutations from different rational design variants with

rounds of error prone PCR. The modestly active original

enzyme was thereby turned into a proficient biocatalyst

for this abiological [4 + 2] cycloaddition reaction [59].

Cytochrome P450-derived enzymes can perform a variety

of reactions and have been engineered to improve

multiple properties [60]. A collection of cytochrome

P450 mutants was screened for cyclopropanation of styr-

enes, and optimized through informed site-directed

mutagenesis [61��]. This enzymatic activity has not been

observed in nature but is very useful to synthetic che-

mists. The work presents a great example of how the

catalytic promiscuity of enzymes can be exploited. Using

chemical intuition, the active site of one of the collection

of cytochrome P450s was rationally re-designed to change

the reduction potential of the heme-bound FeII/III, which

allowed the efficient NAD(P)H-driven cyclopropanation

while suppressing the native monooxygenation activity

[62]. The modification therefore enabled the use of the

P450 variant as a whole-cell catalyst. In another case, high

regioselective and stereoselective hydroxylation of unac-

tivated C–H bonds by a cytochrome P450 enzyme was

achieved through a creative combination of active site

mutagenesis, high-throughput ‘fingerprinting’ to identify

functionally diverse variants, and fingerprint-driven reac-

tivity predictions [63��].

A mononuclear zinc metalloenzyme was computationally

redesigned and then evolved with a combination of

saturation mutagenesis and error prone PCR to create a

variant that was 2500-fold more efficient than the initial

design [64]. Structure-guided design of libraries of para-

oxonase 1 and directed evolution led to variants capable

of up to 340-fold higher catalytic efficiency for toxic

isomers of G-type nerve agents [65]. Similarly, iterative

saturation mutagenesis was used to evolve variants of

phosphotriesterase capable of hydrolyzing V-type nerve

agents with a 230-fold improvement of catalytic efficiency

[66]. In a separate effort to create a toxin-neutralizing

protein, a unique catalytic triad was computationally

designed and subsequently optimized by yeast display.

The resulting protein reacted with a fluorophosphonate

probe at rates comparable to natural serine hydrolases, yet

it was incapable of catalytic turnover [67].

Rational design has also been used to construct whole

artificial protein scaffolds. In some cases, directed evolu-

tion was applied to these artificial structures to select for

desired functions. Proteins from a combinatorial library of

artificial four-helix bundle proteins were found to func-

tion in vivo by rescuing E. coli strains that lacked a
Current Opinion in Chemical Biology 2014, 22:129–136
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conditionally essential gene [68]. In addition, select four-

helix bundle proteins bound to heme and exhibited

peroxidase activity. This activity was improved by ran-

dom mutagenesis and directed evolution [69]. Using

structural principles of natural repeat proteins, designed

ankyrin repeat proteins (DARPins) have been built and

shown to function as artificial antibody mimetics.

Recently, a flexibility loop and additional randomized

regions were incorporated, creating the LoopDARPin

scaffold [70�]. A library based on this improved scaffold

design yielded picomolar binding proteins after only a

single round of selection by ribosome display.

Conclusion
With the investment of sufficient resources and determi-

nation, directed evolution generally appears to yield

desired improvements of protein properties, sometimes

producing remarkable results [71]. Therefore, one might

be tempted to consider protein engineering a mature

field. But those success stories mainly apply to improving

or changing proteins that were provided by natural evo-

lution. In contrast, the generation of novel activities

without natural precedent is still in its infancy, although

several examples have been reported [2,6,10,61��,72,73].

Achieving the synthetic biology goal of integrating arti-

ficial proteins into biological systems will introduce

additional challenges, which again can be overcome with

the help of directed evolution [9,74].
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