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1  | INTRODUC TION

Ribosomes are a central component of life on Earth, and to meet 
varying needs for protein production, the genomes of most eukary‐
otic organisms contain multiple copies of ribosomal DNA (rDNA). 
There is considerable rDNA copy number variation (CNV) both 
within and among taxonomic groups, typically totalling less than 
15 copies in prokaryotes (Liao, 2000), 39–19,300 copies in higher 
animals (Prokopowich, Gregory, & Crease, 2003), 150–26,048 
copies in plants (Prokopowich et al., 2003) and up to 315,786 cop‐
ies in ciliates (Gong, Dong, Liu, & Massana, 2013). Copy number 
is a rapidly evolving trait, and mechanisms for both rDNA copy 
number expansion and contraction have been described (Szostak 
& Wu, 1980). The consequences of rDNA CNV have received con‐
siderable attention in the context of DNA damage response (Ide, 

Miyazaki, Maki, & Kobayashi, 2010), DNA replication stress (Salim 
et al., 2017) and the expression of nonribosomal genes (Paredes, 
Branco, Hartl, Maggert, & Lemos, 2011). Similarly, the ecological 
importance of rDNA CNV has also been well characterized, with 
rDNA copy number being linked to ecosystem stoichiometry (Elser 
et al., 2000), growth rate and competitive ability (Klappenbach, 
Dunbar, & Schmidt, 2000; Nemergut et al., 2016) as well as bias 
in estimates of organismal abundance in high‐throughput ampl‐
icon sequencing (Kembel et al., 2012, Perisin, Vetter, Gilbert, & 
Bergelson, 2016).

Relative to other microorganisms, estimates of rDNA CNV for 
fungi have been limited, and consequently, there has been no large‐
scale analysis of rDNA CNV with this ecologically important group 
of microorganisms. From the studies available, fungal rDNA CNV 
has been estimated to range between 28 and 511 (Liti et al., 2009; 
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Maleszka & Clarkwalker, 1993), which falls intermediate between 
prokaryotes and many larger eukaryotes. There have also been esti‐
mates of considerable rDNA CNV among strains of the same fungal 

species, with Liti et al. (2009) estimating that different strains of 
Saccharomyces cerevisiae had rDNA copies ranging from 54 to 511. 
The dikaryotic nature of many fungi suggests there may even be 

F I G U R E  1   Analysis pipeline for estimating rDNA copy number. (1) Demultiplexed paired‐end reads from whole‐genome sequencing 
projects, along with 10 single‐copy reference genes, are collected for each species. (2) Paired‐end reads aligned to indexed references using 
Bowtie2. (3) Alignment depth over each reference bp is normalized for variable GC content using a 100‐bp sliding window. (4) Overhangs 
are trimmed from alignments and average depth calculated over the length of each reference. (5) Number of rDNA copies is calculated by 
dividing the average depth of single‐copy alignments by the average depth of multi‐copy alignments (ITS and LSU) [Colour figure can be 
viewed at wileyonlinelibrary.com]
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rDNA CNV among genetically distinct nuclei within a fungal individ‐
ual (Zolan, 1995).

Despite a rapid increase in the sequencing of fungal genomes 
in recent years, estimates of rDNA CNV from annotated genomes 
have remained hindered by the collapsing of repetitive regions into 
a single representation. One solution to this problem is comparing 
the abundance of raw reads aligned to both single and multi‐copy re‐
gions of DNA, an approach commonly known as relative read depth. 
Analysis of CNV using read depth was first developed to analyse 
repeat variation in tumour genomes (Chiang et al., 2009), and later 
used to account for anomalies in 16S read abundance in bacteria 
(Perisin et al., 2016). Here, we apply this approach to estimate rDNA 
copy number across a phylogenetically and ecologically diverse suite 
of fungi (Figure 1).

Based on the significant positive relationships observed between 
rDNA copy number and phylogenetic relatedness among other mi‐
croorganisms (Kembel et al., 2012), we hypothesized that variation 
in rDNA copy number would exhibit significant phylogenetic signal 
in fungi. Additionally, due to the association of rDNA copy number 
and the physiological phenomena noted above, we hypothesized 
that rDNA CNV would also be linked with fungal ecological lifestyle. 
Specifically, because rDNA‐associated traits such as rapid growth 
or stress tolerance may be more crucial for some fungal lifestyles 
than others (e.g., pathogens vs. mutualist fungi), we predicted that 
there would be a significant association between fungal ecolog‐
ical lifestyle and rDNA copy number. Finally, because rDNA copy 
number has been reported to be significantly positively correlated 
with genome size in other eukaryotes (Prokopowich et al., 2003), we 
investigated the relationship between rDNA copy number and ge‐
nome size, both dependent and independent of size contributions 
from rDNA in each genome.

2  | MATERIAL S AND METHODS

2.1 | Copy number estimation pipeline

To assess rDNA CNV across a broad phylogenetic range of fungi, 
we selected 91 taxa with available genomic data, spanning phyla 
to interspecific populations. We also choose isolates to represent 
a wide variety of ecological lifestyles, including pathogens, sap‐
rotrophs, plant mutualists and taxa capable of multiple lifestyles. 
Raw reads for each taxon were transferred from the Joint Genome 
Institute's MycoCosm site (Grigoriev et al., 2014) to server space 
at the Minnesota Supercomputing Institute (MSI) using Globus 
(Foster, 2006). Quality scores were converted to PHRED33 using 
Trimmomatic where necessary (Bolger, Lohse, & Usadel, 2014). The 
ITS and LSU gene regions as well as 10 single‐copy reference genes 
were collected for each sequenced taxon. Single‐copy genes were 
obtained as genomic.fasta files (with introns included) by keyword 
searching MycoCosm within the complete annotated assembly of 
each genome (Supporting information Table S1). Current sequencing 
technologies (including long‐read platforms) do not produce reads 
long enough to span multiple copies of the full rDNA cassette. As 

such, reads from multi‐copy regions, such as the internal transcribed 
spacer region (ITS) or the large subunit rRNA gene (LSU), are often 
unable to accrue the confidence values necessary to warrant place‐
ment and are therefore typically excluded from genome assemblies. 
To overcome this issue, we procured the ITS and LSU reference re‐
gions unique to each genome from the EST clusters associated with 
each sequencing project. This was accomplished by BLAST search‐
ing ITS and LSU (E = 1.0 × 10−5, word size = 11) sequences from the 
same genus (search sequence randomly chosen from NCBI) against 
the EST database associated with each genome on MycoCosm 
(Figure 1.1). The nucleotide sequences of these EST clusters, internal 
to each genome, were then used in all downstream analyses. To con‐
firm that EST clusters were high‐fidelity sequence representatives, 
we compared EST‐derived ITS sequences with Sanger‐sequenced ITS 
regions for a subset of the same strains (n = 7) that were used to gen‐
erate the assemblies and found the average number of incongruences 
to be 1.2 bp. DNA for Sanger sequencing was extracted using the 
REDExtract‐N‐Amp plant kit (Sigma‐Aldrich), followed by PCR am‐
plification using the primer pair ITS1‐F/ITS4 (Gardes & Bruns, 1993; 
White, Bruns, Lee, & Taylor, 1990) and sequenced at the University 
of Minnesota Genomics Center. Sequences were aligned using 
sequencher version 5.1 (Gene Codes Corporation, Ann Arbor, MI) 
using default parameters to count incongruences between EST‐ and 
Sanger‐derived sequences. For taxa where JGI annotations (single‐
copy genes) or EST clusters (multi‐copy genes) were not available, 
reference sequences were procured from raw reads using ‐mpileup 
from bcftools in the samtools package (Li et al., 2009). ITS reference 
sequences were trimmed on either side of the priming regions for 
ITS1‐F and ITS4 (Gardes & Bruns, 1993; White et al., 1990) leaving 
ITS reference regions that were approximately 650 bp in length. LSU 
reference sequences were trimmed at the priming region for LROR 
(Rehner & Samuels, 1995) and again 750 bp downstream.

Reference sequences were indexed using bowtie2 (Langmead & 
Salzberg, 2012). Demultiplexed, paired‐ end reads for each genome 
were aligned to each reference gene individually [parameters: 
paired‐end and –very‐sensitive‐local mode with a maximum number 
of unknown base calls equal to 0.15 × read length, and alignment 
score benefits dependent on PHRED values] (Figure 1.2). Sorting 
and depth calculations were carried out using samtools version 1.3 
(Li et al., 2009), with an increased max depth of 1 Mbp, and exclud‐
ing reads with average quality scores <20. To correct for GC bias, 
GC normalization was conducted using a custom R script (R Core 
Team, 2017), employing a sliding window method as conceived by 
Yoon, Xuan, Makarov, Ye, and Sebat (2009) (see script: gc_norm.R) 
(Figure 1.3). Depth was then averaged over the length of each gene, 
minus the first and last 50 bp (which had misrepresentatively low 
depth due to alignment overhangs) (Figure 1.4). For the 40% of taxa 
where such data were available, we analysed sequences generated 
across two independent sequencing lanes to estimate stochastic 
variation introduced during the sequencing process. Single‐copy 
genes with an average depth outside one standard deviation of the 
median value for each independently sequenced lane were excluded 
from the analysis. The copy number for multi‐copy regions was 
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estimated by dividing the GC normalized depth of the average depth 
of ITS and LSU by an average of the GC normalized depth across 
all single‐copy regions (Figure 1.5), and averaged against the two 
independently sequenced lanes (where possible). All analyses were 
carried out using batch submission to the MSI computing cluster (see 
cnv_pipeline.pbs for pipeline bash script).

2.2 | In silico verification of copy number 
estimation pipeline

A mock genome was generated consisting of 52 million randomly 
drawn base pairs (which falls within the genome size range of the 
fungal taxa included) in R. Using the reference regions for Suillus 
brevipes (a randomly chosen reference species), 60 concatenated 
multi‐copy cassettes consisting of tandem ITS and LSU repeats, 
along with the 10 single‐copy reference genes for S. brevipes, were 
inserted into known, nonoverlapping locations in the mock genome 
(see script: generate_mock_genome.R). Twenty‐seven indepen‐
dently drawn sets of paired‐end reads were then generated, varying 
in size from 1 to 50 million reads, formatted as.fastq files with ideal‐
ized quality scores of ~ (representing the highest possible PHRED 
value in ASCII code) and run through the ITS CNV pipeline (see 
script: generate_mock_reads.R) (Figure 2).

2.3 | Phylogenetic analysis

A phylogeny containing the 91 fungal taxa was constructed using 
DNA sequences from three single‐copy genes: TOP2, GH63 and 
MCM7. Alignments for each gene were carried out using MUSCLE 
(Edgar, 2004) on the CIPRES portal (Miller et al. 2010) and trimmed 
using trimAl (Capella‐Gutiérrez, Silla‐Martínez, & Gabaldón, 2009) 
to remove gaps and noninformative positions. Sequences from the 
three genes were then manually concatenated, realigned and ret‐
rimmed resulting in 8,096 informative positions. Phylogenetic analy‐
sis was conducted using RAxML HPC2 (Stamatakis, 2006) on XSEDE 

(Towns et al., 2014) run with default parameters, which utilized a 16 
state GTR model and calculated bootstrap support based on 1,000 
iterations. Results were visualized using FigTree (http://tree.bio.
ed.ac.uk/software/figtree).

2.4 | Statistical analyses

To determine whether fungal rDNA CNV displayed phylogenetic 
signal (i.e., conservation of rDNA copy number among more closely 
related taxa), we used the r package “phylosignal” (Keck et al., 2016) 
on the nonultrametric tree described above. This package calculates 
multiple evolutionary‐ and correlation‐based metrics and allows for 
tests within internal nodes to identify significant “local hotspots” of 
trait conservation. Based on the recommendations of Münkemüller 
et al. (2012), Bloomberg's K and Pagel's λ were selected for the evo‐
lution‐based metrics, while Abouheif's Cmean and Moran's I were 
selected for the spatial correlation metrics. The assessment of phylo‐
genetic signal at internal nodes was conducted using the “lipaMoran” 
function, which calculates local Moran's I (Ii). To determine whether 
ecological lifestyle and rDNA CNV are related, we first assessed 
fungal taxa grouped by trophic mode—saprotrophic, pathotrophic, 
symbiotrophic, as well as those belonging to multiple trophic modes. 
We also tested differences in rDNA CNV among specific guilds con‐
taining sufficient taxon replication (N ≥ 5): soil/litter/organic matter 
saprotroph versus pathogen within the Ascomycota and wood rot 
saprotroph versus ectomycorrhizal with the Basidiomycota. By de‐
lineating these latter two analyses by phyla, we sought to minimize 
the effect of phylogenetic relatedness (see results below). To deter‐
mine significance in these ecological analyses, we used either para‐
metric (ANOVA) or nonparametric (Kruskal–Wallis) tests depending 
on variance heterogeneity. Given the highly divergent rDNA copy 
number estimate for Basidiobolus meristosporus relative to all other 
taxa (see results below), we took a conservative approach and per‐
formed all the phylogenetic and ecological analyses with this taxon 
excluded.

For all genomes where full assembly sizes were published 
(n = 79), we analysed the correlation between rDNA CNV and 
genome size. Because repeat regions are not included in genome 
size estimates based on assembly size, we analysed the relationship 
between rDNA copy number and genome size both including and 
excluding the length contribution of the rDNA cassettes themselves. 
Length contribution from rDNA for each genome was estimated by 
taking the number of rDNA copies estimated for each genome and 
multiplying that by an assumed average rDNA cassette length of 
9.1 kb (Miyazaki & Kobayashi, 2011) and then adding that additional 
size to each assembly size. Because phylogenetic signal analysis 
showed that rDNA CNV differed significantly by phyla (see below), 
we conducted correlational tests on both the whole data set and 
when the data set was subset by phylum. We used both parametric 
(Person's r) and nonparametric tests (Kendall's tau and Spearman's 
rho). For Pearson's r, the data were log‐transformed when appro‐
priate to normalize the distribution, according to visual inspection 
(Plotting) and numeric evidence (Shapiro–Wilk test of normality). 

F I G U R E  2   Mock genome pipeline validation. Observed rDNA 
copy number estimates for a mock genome containing 60 rDNA 
copies. Black horizontal line at 60 represents expected number of 
copies. Green vertical line indicates where copy number estimates 
are ±1 copy from expected after a depth of ~65×/bp [Colour figure 
can be viewed at wileyonlinelibrary.com]
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To account for phylogenetic autocorrelation, we also constructed a 
phylogenetic generalized least squares model (PGLS) with a subset 
tree constructed as above, and implemented in the r package Caper 
(Orme et al., 2014).

3  | RESULTS

From the 27 independent mock genome read libraries simulating var‐
iable sequencing depths, we found that our CNV estimation pipeline 
consistently returned the number of copies expected (±1 copy) after a 
read depth of 65× (Figure 2) (see scripts: generate_mock_genome.R, 

and generate_mock_reads.pbs). As such, we used 65X as the mini‐
mum read depth necessary to confidently estimate rDNA CNV. The 
estimates of rDNA copy number among the 91 taxa analysed ex‐
hibited some variation between sequencing lanes, with an average 
between lane difference of 14.9% (±2.4% SE) (Supporting informa‐
tion Table S2). The upper (251) and lower (11) limits of rDNA copy 
number estimates fell within the range of previous estimates for 
fungi, with the exception of Basidiobolus meristosporus, which had 
an estimated 1,442 rDNA copies (across fungi mean = 113 copies 
(98 with no outlier), median = 82 copies (with or without outlier), 
Figure 3a). Both the evolutionary (Bloomberg's K and Pagel's λ) and 
spatial correlation (Abouheif's Cmean and Moran's I) metrics indicated 

F I G U R E  3   rDNA copy number variation across multiple phylogenetic scales. (a) A maximum‐likelihood phylogenetic reconstruction 
of the 91 fungal taxa included in this study based on concatenation of three single‐copy genes (TOP2, GH63 and MCM7). Branch values 
represent % bootstrap support from 1,000 iterations. Grey numbers next to taxa names indicate rDNA copy number. Ending targets on the 
copy number scale indicate values that are significantly positive (+) or significantly negative (−) according to local Moran's I, and highlight 
local hotspots of autocorrelation. (b) Significance tests of phylogenetic signal in rDNA copy number using both evolutionary (Bloomberg 
and Pagel) and autocorrelation (Abouheif and Moran) metrics. (c) Phylogenetic correlogram of autocorrelation based on Moran's I. The 
x‐axis represents the patristic distance (unitless) of all pairwise comparisons for all taxa under investigation. Shaded area indicates the 95% 
confidence interval of autocorrelation values. Significance based on comparison to the null hypothesis of zero phylogenetic autocorrelation 
(horizontal black line at 0). (d) Distribution of rDNA copy number by fungal phylum. Different letters above groups indicate significant 
differences. Variance assumptions evaluated by Cochran's C test, and significance values assessed by ANOVA and Tukey HSD. See 
Supporting information Figure S1 for a validation that the observed differences in average copy number at the phylum level are not caused 
by overrepresentation of specific taxa [Colour figure can be viewed at wileyonlinelibrary.com]
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significant phylogenetic signal in rDNA CNV (Figure 3b). Across the 
entire fungal phylogeny, there was a significant positive correlation 
between rDNA copy number and taxa at closer phylogenetic dis‐
tances, but a significant negative correlation at greater distances 
(Figure 3c). The negative correlation was particularly notable at the 
level of phylum, where, on average, Ascomycota taxa had only half 
as many copies as those belonging to the Basidiomycota or early di‐
verging lineages (Figure 3d). A similar trend in phylogenetic signal 
was also observed in the local Moran's index analyses, where all taxa 
with significant negative Ii values (rDNA copy number lower than ex‐
pected) were in the Ascomycota and all those with significant posi‐
tive Ii values (rDNA copy number higher than expected) belonged 
to the Basidiomycota or early diverging lineages (Figure 3a). With 
respect to ecological lifestyle, there were no significant differences 
in rDNA CNV across the three trophic modes or for taxa capable 
of belonging to multiple trophic modes (Figure 4a, Supporting in‐
formation Table S3). When comparing among specific guilds, rDNA 
CNV was also not significantly different between pathogens and 
soil/litter/organic matter saprotrophs in the Ascomycota (Figure 4b) 
or between wood saprotrophs and ectomycorrhizal fungi in the 
Basidiomycota (Figure 4c). All tests examining the relationship be‐
tween rDNA CNV and genome size failed to produce evidence that 
these metrics were correlated, regardless of the statistic used or the 
contribution of rDNA cassette length to total genome size (Figure 5).

4  | DISCUSSION

Our results indicate that rDNA CNV and phylogenetic relatedness 
are linked in fungi, but that this relationship is scale‐dependent. At 
close phylogenetic scales (i.e., within species and genera), there was 
an overall trend of greater similarity in rDNA copy number, while at 
more distant scales (i.e., phyla), rDNA copy number became more 
divergent. Despite this general trend, we observed multiple exam‐
ples that warrant caution when considering how rRNA copy number 

varies among fungi. For example, among the 12 different isolates of 
Suillus brevipes, estimates ranged from 72 to 156 copies, while across 
the genus (five additional species of Suillus), the estimated range was 
only slightly greater (44 to 198 copies). Interestingly, even at the very 
closest phylogenetic scale, CBS464.89 and CBS463.89 of Dichomitus 
squalens, which represent independent monokaryons from the same 
dikaryotic individual, had an estimated copy number difference of 
13 (140 vs. 153). Although our analyses do confirm that total rDNA 
copy number is generally an order of magnitude greater for fungi 
than for bacteria or archaea, all three of these microbial groups dis‐
play similar levels of variance in rDNA copy number (Větrovský & 
Baldrian 2013; Stoddard, Smith, Hein, Roller, & Schmidt, 2015). One 
notable exception to this trend was B. meristosporus. Because this 
species represents only a single isolate and a single sequencing li‐
brary, this estimate should also be interpreted cautiously. However, 
Basidiobolus spp. have several properties that are unique, including 
a noncanonical nucleus‐associated organelle, markedly large nuclei, 
and a genome that appears to be highly prone to duplication events 
(Henk & Fisher, 2012; McKerracher & Heath, 1985). Although there 
is evidence for the regulation of rDNA copy number, and some of the 
genetic mechanisms for rDNA copy number maintenance have been 
identified, (Kobayashi, Heck, Nomura, & Horiuchi, 1998; Russell & 
Rodland, 1986; Szostak & Wu, 1980), high rDNA variants have been 
reported in plants, animals and yeast (Rogers & Bendich 1987; Liti 
et al., 2009; Long et al., 2013) and it is currently unknown whether 
high rDNA CN strains represent a conserved or a temporary state 
(Pukkila & Skrzynia, 1993; Simon et al., 2018). Looking forward, re‐
search focused at multiple phylogenetic scales (e.g., is the amount of 
rDNA CNV observed within the genus Suillus common or an excep‐
tion? Why are taxa in the Ascomycota consistently lower in rDNA 
copy number than other phyla?) represents important directions of 
study.

Although rDNA copy number is thought to have important 
physiological implications, such as allowing for more rapid growth 
(Stevenson & Schmidt 2004) and increased DNA damage response 

F I G U R E  4   rDNA copy number variation by fungal ecological lifestyle. (a) Boxplot summaries of rDNA copy number variation by fungal 
trophic mode across the 91 taxa included. (b) rDNA copy number variation of Ascomycota taxa assigned to a specific fungal guild (sensu 
Nguyen et al, 2016); SAP S/L/O = soil, litter and organic matter saprophyte. (c) rDNA copy number variation of Basidiomycota taxa assigned 
to a specific fungal guild; ECM = ectomycorrhizal. For both b and c, only guilds with n ≥ 5 replicate taxa were assessed. Variance assumptions 
evaluated by Cochran's C test and significance values assessed by Kruskal–Wallis (a) or ANOVA (b and c) tests; no significant differences 
were found [Colour figure can be viewed at wileyonlinelibrary.com]
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(Ide et al., 2010), our results did not find that rDNA copy num‐
ber is coupled with fungal ecological lifestyle. Pathogenic fungi 
had a nonsignificant trend towards higher rDNA copy number 
in comparisons across trophic modes and between guilds, but 
there was considerable variation within this ecological lifestyle. 
Further, while genomic studies of fungi capable of using multiple 
trophic modes (e.g., saprotroph and symbiotroph) indicate that 
gene content and expression differs from taxa using a single tro‐
phic mode (Martino et al., 2018), we did not find evidence that 
this increased metabolic flexibility was correlated with rDNA copy 

number. Finally, within the Basidiomycota, ectomycorrhizal fungal 
representatives had rDNA copy number estimates that were very 
comparable to their saprotrophic wood rot relatives (Kohler et al., 
2015). Given that previous studies have shown positive associa‐
tions between rDNA copy number and traits relevant to lifestyle 
(Stevenson & Schmidt 2004; Ide et al., 2010), we suspect that the 
relatively coarse ecological scale of our analyses was not sufficient 
to capture clear links to fungal lifestyle. These results do, how‐
ever, have notable ecological implications for estimates of fungal 
species abundances in high‐throughput amplicon sequencing data 

F I G U R E  5   Fungal genome size and 
rDNA copy number variation. (a) Results 
based on genome assembly size, without 
including the length added by the rDNA 
cassettes. (b) Results after accounting 
for length added by rDNA cassettes. (c) 
Grey solid line represents the average 
across all taxa included, while dotted lines 
correspond to the rRNA CNV–genome 
size relationship for specific phyla. 
Relationships displayed are based on 
genome size without length contribution 
of rDNA cassettes included [Colour figure 
can be viewed at wileyonlinelibrary.com]
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sets (Baldrian et al., 2012). Systematic bias may be introduced as a 
consequence of CNV‐associated differences in template DNA con‐
centrations of barcoding regions (such as ITS) that fall within the 
rDNA cassette. Given our demonstration that rDNA copy number 
can vary widely among closely related taxa, comparisons based on 
ITS sequence read abundance even among members of the same 
species may strongly over‐ or underestimate actual individual fun‐
gal abundance. Efforts to account for these effects, as has been 
applied in other microorganisms (Kembel et al., 2012; Stoddard et 
al., 2015), remain a significant research priority.

In other eukaryotic organisms (e.g., plants and animals), rDNA 
CNV has been shown to have a strong positive correlation with 
genome size, independent of size contributions from rDNA cas‐
settes (Prokopowich et al., 2003; Wencai et al., 2018). Conversely, 
investigation into this correlation for bacteria has shown no such 
relationship (Fogel, Collins, Li, & Brunk, 1999). Contrary to other 
eukaryotes, we found no indication that rDNA CNV is related 
to genome size in fungi (and regardless of whether or not rRNA 
cassette size was also considered). The finding that fungi do not 
conform to the pattern recognized between rDNA CNV and ge‐
nome size may offer an interesting counterpoint for future anal‐
yses into the mechanisms structuring this relationship in plants 
and animals.

Using an in silico approach coupled with computational bench‐
marking, we have demonstrated that fungi exhibit substantial 
rDNA CNV that is inversely correlated with phylogenetic related‐
ness. While we did not observe strong links between rDNA CNV 
and ecological lifestyle, the continued use of this analysis pipe‐
line on the rapidly increasing number of fungal genomes being 
generated will enable greater consideration of this trait in future 
studies. Similarly, using this pipeline in conjunction with studies 
characterizing rDNA gene expression will further enhance our 
understanding of fungal responses to a broad range of environ‐
mental conditions. Importantly, the range of rDNA copy numbers 
estimated for fungi, which have often been thought to bridge the 
macro‐ and microbiological worlds, falls between lower rDNA 
copy numbers in prokaryotes and higher rDNA copy numbers in 
many other eukaryotes. As such, identifying the evolutionary and 
ecological mechanisms constraining CNV for fungi will help facili‐
tate a broader understanding of the influence of rDNA CNV across 
all domains of life.
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